Quick Facts
- Industry
- Data Centers
- Products
- Chillers
- Topics
- Sustainability • Efficiency • Decarbonization
Selecting a language changes the language and content on the Trane site.
Trane ComfortSite is an extranet site designed to save you time. With your secure login, you can:
This is the login for Trane® Connect™ and other Trane® commercial applications. Trane® Connect™ is our secure, cloud-based customer portal to access your building systems to remotely monitor and manage building systems, and conduct routine maintenance.
Latin America
Europe
Asia Pacific
Quick Facts
A major question facing data centers today is how to best set up operations to run the facility in the most cost-effective and sustainable way. Decarbonization, and more specifically, sustainable heat reuse, is an essential component to maintaining a data center built for resilience and with the ability to withstand extreme weather events that are becoming increasingly common.
We recently partnered with Mission Critical on a webinar about The Future of Data Center Cooling and Supply Chain Implications. We dove into strategies and examples of how modern data centers are attacking sustainability plans while improving operations and controlling costs. Read on to learn three important innovations we’re excited about and watch the on-demand webinar to dive deeper into this important topic.
A key component of building a sustainable data center is reducing or eliminating water use. The increase in extreme drought in locations across the world – as well as government regulations and high water usage fees – means that water overuse is not only unethical but in some cases costly and highly regulated.
Adopt Air-Cooled Chillers
To cut down on water use, data center sites across continents are implementing more air-cooled chillers. Impressive innovation in this closed-loop equipment gives operators increased flexibility to benefit from lower power, infrastructure, and operating costs. While there is no one-size-fits-all solution when deciding what chiller is best for each project site, air-cooled chillers offer a host of benefits:
Close Water-Cooled Chiller Water Loops
Most water-cooled chiller systems have open loops that require consistent running water from cooling towers to function. In place of a cooling tower, a closed loop with a fluid cooler can be used to reject the heat outside. This application reuses the water in the loop without requiring an external water source once installed.
Water-cooled chillers provide a much larger capacity than air-cooled chillers, making them an ideal option for very large installations or locations with limited roof space. Using a closed loop optimizes the water-cooled application. This design can be implemented in new or existing installations.
Additional options that can reduce water consumption by up to 80% (versus a cooling tower/open loop) can be found with the use of adiabatic dry coolers or dry coolers in series with cooling towers.
Another major innovation in data center design that is gaining adoption is heat recovery and reuse. Already popular in Europe and gaining traction in North America, this is the process of capturing and removing high-grade heat from data center servers and redirecting it to district heating networks. The reused heat can be used to heat industrial sites, schools, hospitals, and more.
While this approach is best used in instances when a data center is located near an urban environment, advancements in immersion cooling mean that more and more data centers will be built near cities and can take advantage of heat reuse. We’re seeing examples of using a water-use heat pump to boost water temperature to the level of commercial, industrial, or domestic-grade hot water. Allowing data centers to reuse heat in a way that requires far less energy to produce.
As the footprint required for data centers decreases, we anticipate more data centers will be built near urban areas. This will minimize piping, pumping and other equipment requirements and make the economics of heat reuse projects more realistic.
Especially important for bigger operations, adding equipment that isn’t your primary cooling mechanism, but serves as a “trim” cooling function can still have a big impact. Not only do secondary cooling options build efficiency, but they also add an important layer of redundancy to your operations. Two interesting examples that we’re increasingly seeing gain popularity are Reject Heat to Space and Solar Powered Chillers.
As our world continues to consume, transmit and store more and more data, data centers are a critical part of our daily infrastructure. Forward-thinking data center operators who want to position themselves for the future need to start building decarbonization and sustainability efforts now. Not only will it benefit the planet, but it will help drive down costs and increase efficiency.
Watch Trevor Joelson, Trane's Decarbonization Program Lead – Key Accounts, presentation on Decarbonizing Data Centers presentation.
Dive deeper into the strategies above and hear how Trane is helping data center operators create decarbonization plans and overcome supply chain challenges in the on-demand webinar hosted by Mission Critical.