



# **PEP Ecopassport**®

Product Environmental Profile – IntelliPak® 1 Rooftop Unit SEPTEMBER 2025 RN TRNE-10003-V0.1.01-EN





Product Environmental Profile - PEP Ecopassport.

Document in compliance with ISO 14025: 2006 "Environmental labels and declarations. Type III environmental declarations."

| Company             | Trane Technologies                       |
|---------------------|------------------------------------------|
| Contact Information | TraneCommercialEPD@tranetechnologies.com |
| Registration Number | TRNE-10003-V01.01-EN                     |

#### **Company Description**

Trane Technologies\* is a world leader in heating and cooling systems, services, and solutions. Together with our brands, Trane\* and Thermo King\*, we bring efficient and sustainable climate innovations to buildings, homes, and transportation.

Trane helps customers succeed by providing innovative solutions that optimize indoor environments through a broad portfolio of energy-efficient heating, ventilating, and air conditioning systems, buildings, contracting and energy services, parts support, and advanced controls for homes and commercial buildings.

Trane serves engineers, contractors, and building owners on all continents and in an array of markets including education, healthcare, government, industrial/manufacturing, data centers, lodging, retail, and commercial real estate. With more than 900 U.S. patents to date, Trane creates comfortable and energy-efficient environments around the world.

Trane systems and services have a reputation for reliability, high quality, and advanced innovation; and are available through a powerful distribution network. Trane employees and distributors are respected industry-wide for their skills and performance in designing, manufacturing, marketing, and supporting commercial and residential systems.

|                        | Product Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference Product      | IntelliPak® 1 Rooftop Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Product Description    | Industry-leading performance has characterized IntelliPak® for decades. The new IntelliPak® 1 continues to perform, even as the energy efficiency bar gets higher. IntelliPak® 1 includes innovative Trane technologies that deliver outstanding energy efficiency, optimize building systems for occupant comfort and simplify maintenance, including:  Outstanding energy efficiency. 3 tiers of efficiency for most tonnages to meet specific application and regulatory needs.  Driven by Symbio® 800 controller. Flexibility with building automation and connectivity.  Low-GWP refrigerant. Utilizes R-454b with factory-installed leak detection system.  Packed with features for comfort and reliability. Includes electronic expansion valves, optimized economizer controls, AMCA-rated ultra-low leak dampers, double-wall construction, stainless steel drain pan, modulating exhaust/return fans, multiple airflow configurations for more flexibility. |
| Functional Unit        | To produce 1 kW of cooling, according to the appropriate usage scenario defined the AHRI 340/360 standard and during the 22-year reference lifetime of the product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Declared Unit          | To produce cooling thanks to air-to-air cooling of 158 kW according to the appropriate usage scenario and during the 22-year lifetime of the product.  Note: the mathematical relationship between the functional and declared unit is such that the declared unit divided by its capacity in kW equals the functional unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other Products Covered | List of other products covered in this PEP is presented in the section which concerned the extrapolation rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reference Lifetime*    | 22 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

<sup>\*</sup>Reference lifetime was defined as 22 years by the Product Category Rules which governed this analysis.

| Technical C                          | haracteristics              |
|--------------------------------------|-----------------------------|
| Data Point                           | Intellipak® 1 Rooftop Unit  |
| Product Category (as defined in PSR) | Rooftop                     |
| Cooling Technology                   | Air-to-air                  |
| Reversible or Non-reversible         | Non-reversible              |
| Cooling Capacity*                    | 539 MBh<br>158 kW           |
| IEER*                                | 15.1 BTU/W-hr<br>4.43 kW/kW |
| Refrigerant Used                     | R-454B                      |
| Refill Threshold**                   | 90%                         |

<sup>\*</sup>Capacity and IEER at AHRI 340/360 conditions
\*\*Refill threshold denotes the ratio of refrigerant (expressed as a %) at which a refill back up to the original charge takes place. Per the Product Category Rules, the refill threshold is considered 90% by default.

|                        | Consti                                                              | tuent Materials >> Total weigh | nt of the reference product: 3, | 404 kg              |      |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------|--------------------------------|---------------------------------|---------------------|------|--|--|--|--|--|
| Plastics as %          | Plastics as % of weight Metals as % of weight Others as % of weight |                                |                                 |                     |      |  |  |  |  |  |
| Product only: 3,404 kg |                                                                     |                                |                                 |                     |      |  |  |  |  |  |
| Polyurethane           | 0.8%                                                                | Steel                          | 55.2%                           | Rubber              | 2.3% |  |  |  |  |  |
| Other plastics         | 0.2%                                                                | Cast Iron                      | 23.8%                           | Refrigerant         | 2.1% |  |  |  |  |  |
|                        |                                                                     | Aluminum                       | 6.4%                            | Other miscellaneous | 2.3% |  |  |  |  |  |
|                        |                                                                     | Other metals                   | 6.9%                            |                     |      |  |  |  |  |  |
|                        |                                                                     | Packaging                      | g only: 0 kg                    |                     |      |  |  |  |  |  |
|                        | 0%                                                                  |                                | 0%                              |                     | 0%   |  |  |  |  |  |
| Total plastics         | 1.0%                                                                | Total metals                   | 92.3%                           | Total others        | 6.7% |  |  |  |  |  |

|                                                 | Life Cycle Stages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturing                                   | The manufacturing stage includes the production of raw and intermediate materials, as well as transportation to the manufacturer's last logistic platform for Intellipak® 1 rooftop units. The final assembly of the product is carried out at Trane's plant in Clarksville, TN, USA. As a member of SteelZero, Trane has pledged to procure, specify or stock 50% net-zero steel by 2030 and 100% net-zero steel by 2050. The main process steps for production include cutting, rolling, machining, brazing, welding, painting, sub- and final assemblies, and end-of-the-line testing. |
| Distribution                                    | The transport from Trane's manufacturing facility to the customer was considered. The distance was calculated using averages for all shipped orders in 2024.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Installation                                    | The installation stage includes diesel consumed by machinery used to move and place the product during installation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Use                                             | The use stage is conducted in alignment with the PSR, which models energy use of this air-cooled rooftop unit associated with comfort cooling applications over its 22-year lifetime. The conditions outlined AHRI Standard 340/360 were used to set product capacity and efficiency. Refrigerant leak, replacement parts, and electricity usage are considered in this stage. Default refrigerant leak amounts from the PSR were used.                                                                                                                                                   |
| End of Life                                     | The end-of-life stage includes transportation to the end-of-life facility of the disposal of product. End of life fates were modeled by material for the region where they are being disposed, in this case the United States.                                                                                                                                                                                                                                                                                                                                                            |
| Benefits and loads beyond the system boundaries | Throughout the life cycle of the product, net loads and benefits beyond system boundaries are included.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                                     | Data Quality and Software                                                                                                                                                                                                                                   |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geographical<br>Representativeness  | The geographical scope of this PEP is North America.                                                                                                                                                                                                        |
| Temporal<br>Representativeness      | Primary data was collected from 2024. Secondary data refers to the Ecoinvent database published in 2023. The temporal coverage for each secondary process used in the LCA model is specified in the documentation section of individual Ecoinvent datasets. |
| Technological<br>Representativeness | Overall technology representativeness is considered good.                                                                                                                                                                                                   |
| Software and Database Used          | Sima Pro desktop 9.6.0.1 Ecoinvent Database Version 3.10                                                                                                                                                                                                    |

|                                                 | Energy Model Used                                                                                                                   |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturing                                   | Manufacturing electricity considers the eGRID specific region from which the product is being manufactured in Ecoinvent's datasets. |
| Distribution                                    | No energy consumption occurs during the distribution stage.                                                                         |
| Installation                                    | No energy consumption occurs during the installation stage.                                                                         |
| Use                                             | Use stage electricity is modeled using an average North American grid mix dataset.                                                  |
| End of Life                                     | No energy consumption occurs during the end-of-life stage.                                                                          |
| Benefits and loads beyond the system boundaries | End of life benefits consider average North American electricity.                                                                   |

# **Environmental Impacts**

|                                                                | E     | N 15804  | + A2 Env                      | ironmental In          | npact Indica       | tors, per kW       | / correspo | nding to the      | functional u                 | nit                  |           |
|----------------------------------------------------------------|-------|----------|-------------------------------|------------------------|--------------------|--------------------|------------|-------------------|------------------------------|----------------------|-----------|
|                                                                |       |          | fe Cycle<br>acts<br>Module D) | Manufacturing<br>A1-A3 | Distribution<br>A4 | Installation<br>A5 | Use<br>B1  | Maintenance<br>B2 | Operational<br>Energy Use B6 | End of Life<br>C1-C4 | Module D  |
| Climate change -<br>total                                      | GWP   | 1.53E+03 | kg CO2<br>eq                  | 2.25E+02               | 2.47E+00           | 5.54E-01           | 3.70E-01   | 2.09E+01          | 1.27E+03                     | 1.55E+01             | -9.17E+01 |
| Climate change - fossil fuels                                  | GWPf  | 1.52E+03 | kg CO2<br>eq                  | 2.25E+02               | 2.47E+00           | 5.54E-01           | 3.70E-01   | 1.95E+01          | 1.26E+03                     | 1.26E+01             | -9.17E+01 |
| Climate change -<br>biogenics                                  | GWPb  | 1.22E+01 | kg CO2<br>eq                  | 1.49E-01               | 2.87E-04           | 6.63E-05           | 0.00E+00   | 1.40E+00          | 7.70E+00                     | 2.94E+00             | 2.32E-02  |
| Climate change -<br>land use and<br>land use<br>transformation | GWPlu | 3.96E+00 | kg CO2<br>eq                  | 1.22E-01               | 7.11E-05           | 1.62E-05           | 0.00E+00   | 1.76E-02          | 3.82E+00                     | 6.83E-04             | -3.49E-02 |
| Ozone depletion                                                | ODP   | 1.37E-04 | kg CFC-<br>11 eq              | 1.30E-04               | 3.27E-08           | 7.47E-09           | 0.00E+00   | 1.42E-07          | 6.70E-06                     | 3.64E-08             | -2.91E-07 |
| Acidification                                                  | AP    | 5.17E+00 | mole of<br>H+ eq              | 1.74E+00               | 6.48E-03           | 1.55E-03           | 0.00E+00   | 1.11E-01          | 3.31E+00                     | 1.04E-02             | -6.11E-01 |
| Eutrophication, freshwater                                     | Epf   | 9.68E-02 | kg P eq                       | 9.30E-03               | 6.03E-06           | 1.28E-06           | 0.00E+00   | 7.72E-04          | 8.66E-02                     | 9.24E-05             | -2.12E-03 |
| Eutrophication, marine aquatic                                 | Epm   | 7.75E-01 | kg of N<br>eq                 | 2.43E-01               | 2.33E-03           | 5.77E-04           | 0.00E+00   | 2.25E-02          | 5.00E-01                     | 6.62E-03             | -9.59E-02 |
| Eutrophication,<br>terrestrial                                 | Ept   | 8.66E+00 | mole of<br>N eq               | 2.73E+00               | 2.55E-02           | 6.33E-03           | 0.00E+00   | 2.32E-01          | 5.63E+00                     | 3.26E-02             | -1.06E+00 |
| Photochemical ozone formation                                  | POCP  | 3.26E+00 | kg<br>NMVOC<br>eq             | 8.50E-01               | 9.66E-03           | 2.34E-03           | 0.00E+00   | 7.26E-02          | 2.32E+00                     | 1.21E-02             | -3.17E-01 |
| Abiotic resource<br>depletion –<br>elements                    | ADPe  | 9.61E-03 | kg Sb eq                      | 9.02E-03               | 1.44E-07           | 3.16E-08           | 0.00E+00   | 5.03E-04          | 6.28E-05                     | 1.68E-05             | -2.65E-04 |
| Abiotic resource<br>depletion –<br>fossil fuels                | ADPf  | 2.65E+04 | MJ                            | 2.20E+03               | 3.25E+01           | 7.29E+00           | 0.00E+00   | 2.44E+02          | 2.40E+04                     | 3.48E+01             | -7.95E+02 |
| Water use                                                      | WU    | 3.46E+02 | m3<br>world eq                | 3.76E+01               | 3.00E-02           | 6.64E-03           | 0.00E+00   | 2.36E+00          | 3.07E+02                     | -6.31E-01            | -5.89E+00 |

Note: characterization factors use the -1/+1 biogenic carbon storage assessment methodology

|                                                                                                                             |             | Inv                                          | ento     | ry Flow Indica       | tors, per kV         | V correspor          | nding to th          | ne functional                | unit                 |                       |                        |
|-----------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------|----------|----------------------|----------------------|----------------------|----------------------|------------------------------|----------------------|-----------------------|------------------------|
|                                                                                                                             |             | Total Life Cy<br>Impacts (Exclu<br>Module D) | ding     |                      |                      |                      |                      | Operational<br>Energy Use B6 | End of Life<br>C1-C4 | Module D              |                        |
| Use of renewable primary energy, excluding renewable primary energy resources used as raw materials                         | PERE        | 3.52E+03                                     | МЈ       | 1.53E+02             | 5.22E-02             | 1.21E-02             | 0.00E+00             | 2.42E+01                     | 3.34E+03             | 8.96E-01              | -4.36E+01              |
| Use of renewable primary energy resources used as raw materials                                                             | PERM        | 1.74E+01                                     | МЈ       | 1.74E+01             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00                     | 0.00E+00             | 0.00E+00              | 0.00E+00               |
| Total use of renewable primary energy resources                                                                             | PERT        | 3.53E+03                                     | MJ       | 1.70E+02             | 5.22E-02             | 1.21E-02             | 0.00E+00             | 2.42E+01                     | 3.34E+03             | 8.96E-01              | -4.36E+01              |
| Use of non-renewable<br>primary energy,<br>excluding non-<br>renewable primary<br>energy resources used<br>as raw materials | PENRM       | 1.64E+01                                     | MJ       | 1.64E+01             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00                     | 0.00E+00             | 0.00E+00              | -1.90E+00              |
| Use of non-renewable primary energy resources used as raw materials                                                         | PENRE       | 2.65E+04                                     | MJ       | 2.18E+03             | 3.25E+01             | 7.29E+00             | 0.00E+00             | 2.44E+02                     | 2.40E+04             | 3.48E+01              | -7.93E+02              |
| Total use of non-<br>renewable primary<br>energy resources                                                                  | PENRT       | 2.65E+04                                     | MJ       | 2.20E+03             | 3.25E+01             | 7.29E+00             | 0.00E+00             | 2.44E+02                     | 2.40E+04             | 3.48E+01              | -7.95E+02              |
| Use of secondary materials                                                                                                  | USM         | 8.80E+00                                     | kg       | 8.80E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00                     | 0.00E+00             | 0.00E+00              | 0.00E+00               |
| Use of renewable secondary fuels                                                                                            | URSF        | 0.00E+00                                     | MJ       | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00                     | 0.00E+00             | 0.00E+00              | 0.00E+00               |
| Use of non-renewable secondary fuels                                                                                        | UNRSF       | 0.00E+00                                     | MJ       | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00                     | 0.00E+00             | 0.00E+00              | 0.00E+00               |
| Net use of fresh water<br>Hazardous waste<br>disposed                                                                       | NUFW<br>HWD | 1.61E+01<br>1.30E+00                         | m3       | 1.09E+00<br>1.07E-01 | 1.09E-03<br>2.64E-04 | 2.44E-04<br>5.89E-05 | 0.00E+00<br>0.00E+00 | 9.26E-02<br>6.71E-03         | 1.49E+01<br>6.23E-01 | -1.30E-02<br>5.61E-01 | -2.00E-01<br>-9.65E-03 |
| Non-hazardous waste disposed                                                                                                | NHWD        | 4.26E+01                                     | kg       | 7.17E+00             | 1.35E-03             | 2.95E-04             | 0.00E+00             | 2.07E+00                     | 1.19E+01             | 2.15E+01              | -7.90E-01              |
| Radioactive waste disposed                                                                                                  | RWD         | 1.36E-01                                     | kg       | 1.68E-03             | 1.17E-06             | 2.72E-07             | 0.00E+00             | 5.01E-04                     | 1.34E-01             | 1.54E-05              | -1.17E-04              |
| Components for re-<br>use                                                                                                   | CRU         | 0.00E+00                                     | kg       | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00                     | 0.00E+00             | 0.00E+00              | 0.00E+00               |
| Materials for recycling<br>Materials for energy                                                                             | MFR         | 2.10E+01                                     | kg       | 4.55E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00                     | 0.00E+00             | 1.65E+01              | 0.00E+00               |
| recovery Exported energy                                                                                                    | MER<br>EE   | 0.00E+00<br>3.21E+00                         | kg<br>MJ | 0.00E+00<br>2.77E-02 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00         | 0.00E+00<br>0.00E+00 | 0.00E+00<br>3.18E+00  | 0.00E+00<br>0.00E+00   |
| LAPOI LEU CHEIBY                                                                                                            |             | 3.21LT00                                     | IVIJ     | 2.//L-UZ             | 0.00L+00             | U.UUL+UU             | 0.00L+00             | U.UULTUU                     | U.UULTUU             | J.10L+00              | U.UUL+UU               |

|                       |     | TRACI 2              | 2.1 Environm  | ental Impact  | Indicators, p | er kW corr   | esponding | g to the func | tional unit   |             |           |
|-----------------------|-----|----------------------|---------------|---------------|---------------|--------------|-----------|---------------|---------------|-------------|-----------|
|                       |     | Total Life           | Cycle Impacts | Manufacturing | Distribution  | Installation | Use       | Maintenance   | Operational   | End of Life | Module D  |
|                       |     | (Excludin            | g Module D)   | A1-A3         | A4            | A5           | B1        | B2            | Energy Use B6 | C1-C4       | Wodule D  |
| Ozone depletion       | OD  | 1.77E-04             | kg CFC-11 eq  | 1.63E-04      | 3.46E-08      | 7.91E-09     | 0.00E+00  | 2.12E-07      | 1.42E-05      | 4.05E-08    | -7.59E-07 |
| Global warming        | GW  | 1.51E+03             | kg CO2 eq     | 2.21E+02      | 2.44E+00      | 5.48E-01     | 3.24E-01  | 1.99E+01      | 1.25E+03      | 1.31E+01    | -8.98E+01 |
| Smog                  | SG  | 4.79E+01             | kg O3 eq      | 1.51E+01      | 1.48E-01      | 3.68E-02     | 6.03E-05  | 1.33E+00      | 3.11E+01      | 1.86E-01    | -6.09E+00 |
| Acidification         | Α   | 4.37E+00             | kg SO2 eq     | 1.45E+00      | 5.82E-03      | 1.40E-03     | 0.00E+00  | 9.51E-02      | 2.81E+00      | 9.25E-03    | -5.22E-01 |
| Eutrophication        | E   | 8.30E-01             | kg N eq       | 1.14E-01      | 3.96E-04      | 9.47E-05     | 0.00E+00  | 1.03E-02      | 7.00E-01      | 5.48E-03    | -2.84E-02 |
| Carcinogenics         | С   | 7.79E-06             | CTUh          | 4.28E-06      | 1.78E-09      | 4.15E-10     | 0.00E+00  | 8.10E-08      | 3.41E-06      | 2.75E-08    | -4.56E-07 |
| Non carcinogenics     | NC  | 1.16E-04             | CTUh          | 6.15E-05      | 3.87E-07      | 8.04E-08     | 0.00E+00  | 2.53E-06      | 5.03E-05      | 7.82E-07    | -6.20E-06 |
| Respiratory effects   | RE  | 2.20E+00             | kg PM2.5 eq   | 2.32E-01      | 9.88E-04      | 2.23E-04     | 0.00E+00  | 2.00E-02      | 1.95E+00      | 1.85E-03    | -8.31E-02 |
| Ecotoxicity           | EX  | <b>6.29E+02</b> CTUe |               | 4.19E+02      | 8.06E+00      | 1.66E+00     | 0.00E+00  | 1.23E+01      | 1.79E+02      | 8.89E+00    | -1.13E+02 |
| Fossil fuel depletion | FFD | 1.67E+03             | MJ surplus    | 1.34E+02      | 4.58E+00      | 1.03E+00     | 0.00E+00  | 1.77E+01      | 1.51E+03      | 4.42E+00    | -3.62E+01 |

| EN 15804 + A2 Environmental Impact Indicators, per device corresponding to the reference product |       |          |                               |                        |                    |                    |           |                   |                              |                      |           |
|--------------------------------------------------------------------------------------------------|-------|----------|-------------------------------|------------------------|--------------------|--------------------|-----------|-------------------|------------------------------|----------------------|-----------|
|                                                                                                  |       |          | fe Cycle<br>acts<br>Module D) | Manufacturing<br>A1-A3 | Distribution<br>A4 | Installation<br>A5 | Use<br>B1 | Maintenance<br>B2 | Operational<br>Energy Use B6 | End of Life<br>C1-C4 | Module D  |
| Climate change -<br>total                                                                        | GWP   | 2.42E+05 | kg CO2<br>eq                  | 3.55E+04               | 3.90E+02           | 8.76E+01           | 5.85E+01  | 3.30E+03          | 2.00E+05                     | 2.45E+03             | -1.45E+04 |
| Climate change -<br>fossil fuels                                                                 | GWPf  | 2.40E+05 | kg CO2<br>eq                  | 3.55E+04               | 3.90E+02           | 8.76E+01           | 5.85E+01  | 3.08E+03          | 1.99E+05                     | 1.98E+03             | -1.45E+04 |
| Climate change -<br>biogenics                                                                    | GWPb  | 1.93E+03 | kg CO2<br>eq                  | 2.35E+01               | 4.54E-02           | 1.05E-02           | 0.00E+00  | 2.22E+02          | 1.22E+03                     | 4.64E+02             | 3.66E+00  |
| Climate change -<br>land use and<br>land use<br>transformation                                   | GWPlu | 6.25E+02 | kg CO2<br>eq                  | 1.93E+01               | 1.12E-02           | 2.56E-03           | 0.00E+00  | 2.78E+00          | 6.03E+02                     | 1.08E-01             | -5.51E+00 |
| Ozone depletion                                                                                  | ODP   | 2.17E-02 | kg CFC-<br>11 eq              | 2.06E-02               | 5.16E-06           | 1.18E-06           | 0.00E+00  | 2.25E-05          | 1.06E-03                     | 5.75E-06             | -4.60E-05 |
| Acidification                                                                                    | AP    | 8.18E+02 | mole of<br>H+ eq              | 2.74E+02               | 1.02E+00           | 2.45E-01           | 0.00E+00  | 1.75E+01          | 5.23E+02                     | 1.64E+00             | -9.65E+01 |
| Eutrophication, freshwater                                                                       | Epf   | 1.53E+01 | kg P eq                       | 1.47E+00               | 9.52E-04           | 2.02E-04           | 0.00E+00  | 1.22E-01          | 1.37E+01                     | 1.46E-02             | -3.35E-01 |
| Eutrophication, marine aquatic                                                                   | Epm   | 1.22E+02 | kg of N<br>eq                 | 3.84E+01               | 3.68E-01           | 9.12E-02           | 0.00E+00  | 3.56E+00          | 7.89E+01                     | 1.05E+00             | -1.51E+01 |
| Eutrophication,<br>terrestrial                                                                   | Ept   | 1.37E+03 | mole of<br>N eq               | 4.32E+02               | 4.04E+00           | 1.00E+00           | 0.00E+00  | 3.66E+01          | 8.89E+02                     | 5.15E+00             | -1.68E+02 |
| Photochemical ozone formation                                                                    | POCP  | 5.15E+02 | kg<br>NMVOC<br>eq             | 1.34E+02               | 1.53E+00           | 3.70E-01           | 0.00E+00  | 1.15E+01          | 3.66E+02                     | 1.92E+00             | -5.02E+01 |
| Abiotic resource<br>depletion –<br>elements                                                      | ADPe  | 1.52E+00 | kg Sb eq                      | 1.43E+00               | 2.28E-05           | 5.00E-06           | 0.00E+00  | 7.95E-02          | 9.92E-03                     | 2.66E-03             | -4.19E-02 |
| Abiotic resource<br>depletion –<br>fossil fuels                                                  | ADPf  | 4.19E+06 | MJ                            | 3.47E+05               | 5.13E+03           | 1.15E+03           | 0.00E+00  | 3.86E+04          | 3.79E+06                     | 5.50E+03             | -1.26E+05 |
| Water use                                                                                        | WU    | 5.47E+04 | m3<br>world eq                | 5.94E+03               | 4.73E+00           | 1.05E+00           | 0.00E+00  | 3.73E+02          | 4.84E+04                     | -9.97E+01            | -9.30E+02 |

Note: characterization factors use the -1/+1 biogenic carbon storage assessment methodology

|                                                                                                             |       | Invent                                       | tory F      | low Indicator          | s, per device      | e correspor        | nding to th | e reference       | product                      |                      |           |
|-------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------|-------------|------------------------|--------------------|--------------------|-------------|-------------------|------------------------------|----------------------|-----------|
|                                                                                                             |       | Total Life Cy<br>Impacts (Exclu<br>Module D) | cle<br>ding | Manufacturing<br>A1-A3 | Distribution<br>A4 | Installation<br>A5 | Use<br>B1   | Maintenance<br>B2 | Operational<br>Energy Use B6 | End of Life<br>C1-C4 | Module D  |
| Use of renewable primary energy, excluding renewable primary energy resources used as raw materials         | PERE  | 5.56E+05                                     | МЈ          | 2.42E+04               | 8.24E+00           | 1.91E+00           | 0.00E+00    | 3.82E+03          | 5.27E+05                     | 1.42E+02             | -6.89E+03 |
| Use of renewable primary energy resources used as raw materials                                             | PERM  | 2.76E+03                                     | MJ          | 2.76E+03               | 0.00E+00           | 0.00E+00           | 0.00E+00    | 0.00E+00          | 0.00E+00                     | 0.00E+00             | 0.00E+00  |
| Total use of renewable primary energy resources                                                             | PERT  | 5.58E+05                                     | MJ          | 2.69E+04               | 8.24E+00           | 1.91E+00           | 0.00E+00    | 3.82E+03          | 5.27E+05                     | 1.42E+02             | -6.89E+03 |
| Use of non-renewable primary energy, excluding non-renewable primary energy resources used as raw materials | PENRM | 2.60E+03                                     | MJ          | 2.60E+03               | 0.00E+00           | 0.00E+00           | 0.00E+00    | 0.00E+00          | 0.00E+00                     | 0.00E+00             | -3.00E+02 |
| Use of non-renewable primary energy resources used as raw materials                                         | PENRE | 4.19E+06                                     | MJ          | 3.45E+05               | 5.13E+03           | 1.15E+03           | 0.00E+00    | 3.86E+04          | 3.79E+06                     | 5.50E+03             | -1.25E+05 |
| Total use of non-<br>renewable primary<br>energy resources                                                  | PENRT | 4.19E+06                                     | MJ          | 3.47E+05               | 5.13E+03           | 1.15E+03           | 0.00E+00    | 3.86E+04          | 3.79E+06                     | 5.50E+03             | -1.26E+05 |
| Use of secondary materials                                                                                  | USM   | 1.39E+03                                     | kg          | 1.39E+03               | 0.00E+00           | 0.00E+00           | 0.00E+00    | 0.00E+00          | 0.00E+00                     | 0.00E+00             | 0.00E+00  |
| Use of renewable secondary fuels                                                                            | URSF  | 0.00E+00                                     | MJ          | 0.00E+00               | 0.00E+00           | 0.00E+00           | 0.00E+00    | 0.00E+00          | 0.00E+00                     | 0.00E+00             | 0.00E+00  |
| Use of non-renewable secondary fuels                                                                        | UNRSF | 0.00E+00                                     | MJ          | 0.00E+00               | 0.00E+00           | 0.00E+00           | 0.00E+00    | 0.00E+00          | 0.00E+00                     | 0.00E+00             | 0.00E+00  |
| Net use of fresh water Hazardous waste                                                                      | NUFW  | 2.54E+03                                     | m3          | 1.73E+02               | 1.73E-01           | 3.85E-02           | 0.00E+00    | 1.46E+01          | 2.36E+03                     | -2.05E+00            | -3.15E+01 |
| disposed                                                                                                    | HWD   | 2.05E+02                                     | kg          | 1.68E+01               | 4.18E-02           | 9.31E-03           | 0.00E+00    | 1.06E+00          | 9.84E+01                     | 8.87E+01             | -1.52E+00 |
| Non-hazardous waste disposed                                                                                | NHWD  | 6.74E+03                                     | kg          | 1.13E+03               | 2.13E-01           | 4.66E-02           | 0.00E+00    | 3.27E+02          | 1.89E+03                     | 3.39E+03             | -1.25E+02 |
| Radioactive waste disposed                                                                                  | RWD   | 2.15E+01                                     | kg          | 2.66E-01               | 1.85E-04           | 4.29E-05           | 0.00E+00    | 7.92E-02          | 2.12E+01                     | 2.44E-03             | -1.84E-02 |
| Components for re-<br>use                                                                                   | CRU   | 0.00E+00                                     | kg          | 0.00E+00               | 0.00E+00           | 0.00E+00           | 0.00E+00    | 0.00E+00          | 0.00E+00                     | 0.00E+00             | 0.00E+00  |
| Materials for recycling                                                                                     | MFR   | 3.32E+03                                     | kg          | 7.19E+02               | 0.00E+00           | 0.00E+00           | 0.00E+00    | 0.00E+00          | 0.00E+00                     | 2.60E+03             | 0.00E+00  |
| Materials for energy recovery                                                                               | MER   | 0.00E+00                                     | kg          | 0.00E+00               | 0.00E+00           | 0.00E+00           | 0.00E+00    | 0.00E+00          | 0.00E+00                     | 0.00E+00             | 0.00E+00  |
| Exported energy                                                                                             | EE    | 5.07E+02                                     | MJ          | 4.37E+00               | 0.00E+00           | 0.00E+00           | 0.00E+00    | 0.00E+00          | 0.00E+00                     | 5.02E+02             | 0.00E+00  |

| TRACI 2.1 Environmental Impact Indicators, per device corresponding to the reference product |     |          |                            |                        |                    |                    |           |                   |                              |                      |           |
|----------------------------------------------------------------------------------------------|-----|----------|----------------------------|------------------------|--------------------|--------------------|-----------|-------------------|------------------------------|----------------------|-----------|
|                                                                                              |     |          | Cycle Impacts ng Module D) | Manufacturing<br>A1-A3 | Distribution<br>A4 | Installation<br>A5 | Use<br>B1 | Maintenance<br>B2 | Operational<br>Energy Use B6 | End of Life<br>C1-C4 | Module D  |
| Ozone depletion                                                                              | OD  | 2.80E-02 | kg CFC-11 eq               | 2.57E-02               | 5.46E-06           | 1.25E-06           | 0.00E+00  | 3.35E-05          | 2.24E-03                     | 6.40E-06             | -1.20E-04 |
| Global warming                                                                               | GW  | 2.38E+05 | kg CO2 eq                  | 3.49E+04               | 3.85E+02           | 8.66E+01           | 5.12E+01  | 3.15E+03          | 1.97E+05                     | 2.08E+03             | -1.42E+04 |
| Smog                                                                                         | SG  | 7.58E+03 | kg O3 eq                   | 2.39E+03               | 2.34E+01           | 5.81E+00           | 9.53E-03  | 2.10E+02          | 4.92E+03                     | 2.93E+01             | -9.62E+02 |
| Acidification                                                                                | Α   | 6.91E+02 | kg SO2 eq                  | 2.29E+02               | 9.20E-01           | 2.21E-01           | 0.00E+00  | 1.50E+01          | 4.44E+02                     | 1.46E+00             | -8.25E+01 |
| Eutrophication                                                                               | E   | 1.31E+02 | kg N eq                    | 1.80E+01               | 6.26E-02           | 1.50E-02           | 0.00E+00  | 1.62E+00          | 1.11E+02                     | 8.65E-01             | -4.48E+00 |
| Carcinogenics                                                                                | С   | 1.23E-03 | CTUh                       | 6.76E-04               | 2.81E-07           | 6.56E-08           | 0.00E+00  | 1.28E-05          | 5.38E-04                     | 4.35E-06             | -7.20E-05 |
| Non carcinogenics                                                                            | NC  | 1.83E-02 | CTUh                       | 9.71E-03               | 6.12E-05           | 1.27E-05           | 0.00E+00  | 4.00E-04          | 7.95E-03                     | 1.24E-04             | -9.80E-04 |
| Respiratory effects                                                                          | RE  | 3.48E+02 | kg PM2.5 eq                | 3.66E+01               | 1.56E-01           | 3.52E-02           | 0.00E+00  | 3.16E+00          | 3.07E+02                     | 2.92E-01             | -1.31E+01 |
| Ecotoxicity                                                                                  | EX  | 9.93E+04 | CTUe                       | 6.62E+04               | 1.27E+03           | 2.62E+02           | 0.00E+00  | 1.94E+03          | 2.82E+04                     | 1.40E+03             | -1.78E+04 |
| Fossil fuel depletion                                                                        | FFD | 2.64E+05 | MJ surplus                 | 2.11E+04               | 7.24E+02           | 1.63E+02           | 0.00E+00  | 2.80E+03          | 2.38E+05                     | 6.99E+02             | -5.71E+03 |

### **Extrapolation Factors**

IntelliPak® 1 products are part of a homogenous family of Trane rooftop units. Additional products covered by this PEP are detailed below, with the reference product denoted in blue.

| IntelliPak®1 20  |
|------------------|
| IntelliPak®1 25  |
| IntelliPak®1 30  |
| IntelliPak®1 40  |
| IntelliPak®1 50  |
| IntelliPak®1 55  |
| IntelliPak®1 60  |
| IntelliPak®1 70  |
| IntelliPak®1 75  |
| IntelliPak®1 90  |
| IntelliPak®1 105 |
| IntelliPak®1 115 |
| IntelliPak®1 130 |

For products other than the reference product, the environmental impacts can be calculated using the extrapolation rules below. The following tables contain factors to be used in the extrapolation of LCIA results for the IntelliPak® 1 Rooftop units covered in this report. These scaling factors are intended to allow interested parties to determine the environmental impacts of IntelliPak® 1 products of interest.

Extrapolation coefficients are given for the environmental impact of the functional unit, i.e. the emission of 1 kW cooling power. For each stage of the life cycle, the environmental impacts of the product concerned are calculated by multiplying the impacts of the declaration corresponding to the reference product by the extrapolation coefficient. The "Total" column should be calculated by adding the environmental impacts of each stage of the life cycle.

#### To use these scaling factors, individuals should:

- 1. Identify the LCIA result of interest and product of interest.
- 2. Multiply the results in the reference product's environmental impact indicator table, found on page 4-7, by the corresponding cell in the table that pertains to the product of interest, found below.

|                  | Extrapolation Factors – Declared Unit |      |      |      |      |      |      |       |      | Extrapolation Factors – Functional Unit |      |      |      |      |      |      |       |      |
|------------------|---------------------------------------|------|------|------|------|------|------|-------|------|-----------------------------------------|------|------|------|------|------|------|-------|------|
| Product          | A1-A3                                 | A4   | A5   | B1   | B2   | В6   | В7   | C1-C4 | D    | A1-A3                                   | A4   | A5   | B1   | B2   | В6   | В7   | C1-C4 | D    |
| IntelliPak®1 20  | 0.60                                  | 0.60 | 1.00 | 1.00 | 1.00 | 0.41 | 0.60 | 0.60  | 0.60 | 1.23                                    | 1.23 | 2.06 | 2.06 | 2.06 | 0.85 | 1.23 | 1.23  | 1.23 |
| IntelliPak®1 25  | 0.60                                  | 0.60 | 1.00 | 1.00 | 1.00 | 0.55 | 0.60 | 0.60  | 0.60 | 1.05                                    | 1.05 | 1.75 | 1.75 | 1.75 | 0.96 | 1.05 | 1.05  | 1.05 |
| IntelliPak®1 30  | 0.65                                  | 0.65 | 1.00 | 1.00 | 1.00 | 0.61 | 0.65 | 0.65  | 0.65 | 1.00                                    | 1.00 | 1.54 | 1.54 | 1.54 | 0.93 | 1.00 | 1.00  | 1.00 |
| IntelliPak®1 40  | 0.92                                  | 0.92 | 1.00 | 1.00 | 1.00 | 0.86 | 0.92 | 0.92  | 0.92 | 1.07                                    | 1.07 | 1.16 | 1.16 | 1.16 | 1.00 | 1.07 | 1.07  | 1.07 |
| IntelliPak®1 50  | 1.00                                  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 | 1.00                                    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 |
| IntelliPak®1 55  | 1.00                                  | 1.00 | 1.00 | 1.00 | 1.00 | 1.12 | 1.00 | 1.00  | 1.00 | 0.86                                    | 0.86 | 0.86 | 0.86 | 0.86 | 0.97 | 0.86 | 0.86  | 0.86 |
| IntelliPak®1 60  | 1.14                                  | 1.14 | 1.00 | 1.00 | 1.00 | 1.17 | 1.14 | 1.14  | 1.14 | 0.92                                    | 0.92 | 0.80 | 0.80 | 0.80 | 0.94 | 0.92 | 0.92  | 0.92 |
| IntelliPak®1 70  | 1.16                                  | 1.16 | 1.00 | 1.00 | 1.00 | 1.48 | 1.16 | 1.16  | 1.16 | 0.74                                    | 0.74 | 0.64 | 0.64 | 0.64 | 0.94 | 0.74 | 0.74  | 0.74 |
| IntelliPak®1 75  | 1.21                                  | 1.21 | 1.00 | 1.00 | 1.00 | 1.59 | 1.21 | 1.21  | 1.21 | 0.71                                    | 0.71 | 0.59 | 0.59 | 0.59 | 0.93 | 0.71 | 0.71  | 0.71 |
| IntelliPak®1 90  | 1.70                                  | 1.70 | 1.00 | 1.00 | 1.00 | 1.95 | 1.70 | 1.70  | 1.70 | 0.79                                    | 0.79 | 0.47 | 0.47 | 0.47 | 0.91 | 0.79 | 0.79  | 0.79 |
| IntelliPak®1 105 | 1.78                                  | 1.78 | 1.00 | 1.00 | 1.00 | 2.31 | 1.78 | 1.78  | 1.78 | 0.73                                    | 0.73 | 0.41 | 0.41 | 0.41 | 0.95 | 0.73 | 0.73  | 0.73 |

## **Comparability**

EPDs published within the same product category, though originating from different programs, may not be comparable. Full conformance with a PCR allows PEP comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible.

#### References

- Air-Conditioning, Heating, and Refrigeration Institute. (2022). https://www.ahrinet.org/search-standards/ahri-340360-i-p-performance-rating-commercial-and-industrial-unitary-air-conditioning-and-heat-pump. Retrieved from https://www.ahrinet.org/standards/search-standards: https://www.ahrinet.org/system/files/2023-06/AHRI%20Standard%20340-360-2022%20%28I-P%29.pdf
- AISI & SMA. (2021). Determination of Steel Recycling Ratesd in the United States. American Iron and Steel Institute and Steel Manufacturers Association.
- ANSI/ASHRAE/IES. (2022). Standard 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings. Peachtree Corners, GA, USA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. Retrieved from https://www.ashrae.org/.
- CEN. (2019). EN 15804+A2: Sustainability of construction works Environmental product declarations Core rules for the product category of construction products. European Committee for Standardization.
- ISO. (2006). Environmental labels and declarations Type III environmental declarations Principles and Procedures. Geneva: International Organization for Standardization.
- ISO. (2006). ISO 14040/Amd 1:2020: Environmental management Life cycle assessment Principles and framework. Geneva: International Organization for Standardization.
- ISO. (2006). ISO 14044/Amd 1:2017/Amd 2:2020: Environmental Management Life cycle assessment Requirements and Guidelines. Geneva: International Organization for Standardization.
- The Aluminum Association: (2025). Infinitely Recyclable. Retrieved from The Aluminum Association: https://www.aluminum.org/Recycling
- Trane. (2025). IntelliPak® Rooftop Units. Retrieved from Trane: https://elibrary.tranetechnologies.com/public/commercial-hvac/Literature/Installation%20Operation%20and%20Maintenance/RT-SVX090C-EN 05022025.pdf
- Trane Technologies. (2025). 2024 Sustainability Report. Retrieved from Trane Technologies: https://www.tranetechnologies.com/content/dam/cs-corporate/pdf/sustainability/annual/2024-Sustainability-Report.pdf
- US Department of Energy. (2024). Incorporate Minimum Efficiency Requirements for Heating and Cooling Products into Federal Acquisition Documents. Retrieved from Federal Energy Management Program: https://www.energy.gov/femp/incorporate-minimum-efficiency-requirements-heating-and-cooling-products-federal-acquisition
- US EPA. (2024, November). Durable Goods: Product-Specific Data. Retrieved from United States Environmental Protection Agency: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/durable-goods-product-specific-data
- US EPA. (2024, November). Other Nonferrous Metals: Material-Specific Data. Retrieved from United States Environmental Protection Agency: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/other-nonferrous-metals-material-specific
- US EPA. (2024, November). Plastics: Material-Specific Data. Retrieved from United States Environmental Protection Agency: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data
- US EPA. (2024, November). Rubber and Leather: Material-Specific Data. Retrieved from United States Environmental Protection Agency: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/rubber-and-leather-material-specific-data
- US EPA. (2025). Stationary Refrigeration Safe Disposal Requirements. Retrieved from United States Environmental Protection Agency: https://www.epa.gov/section608/stationary-refrigeration-safe-disposal-requirements

| Registration number: TRNE-10003-V01.01-EN                                                                                                                                                                                                                                     | Drafting rules: "PEP-PCR-ed4-EN-2021 09 06" Supplemented by "PSR-0013-ed3.0-EN-2023 06 06" |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| Verifier accreditation number: VH44                                                                                                                                                                                                                                           | Information and reference documents: www.pep-ecopassport.org                               |  |  |  |  |  |
| Date of issue: 9-2025                                                                                                                                                                                                                                                         | Validity period: 5 years                                                                   |  |  |  |  |  |
| Independent verification of the declaration and data in compliance with ISO 14025:2006                                                                                                                                                                                        |                                                                                            |  |  |  |  |  |
| Internal:                                                                                                                                                                                                                                                                     | External:                                                                                  |  |  |  |  |  |
| The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)                                                                                                                                                                                         |                                                                                            |  |  |  |  |  |
| PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 The components of the present PEP may not be compared with components from any other program.  Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations" | PEP<br>eco<br>PASS                                                                         |  |  |  |  |  |

| Trane – by Trane Technologies (NYSE: TT), a global climate innovator – creates comfortable, energy efficient indoor environments through a broad portfolio of heating, ventilating and air conditioning systems and controls, services, parts and supply. For more information, please visit trane.com or tranetechnologies.com.  All trademarks referenced in this document are the trademarks of their respective owners. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                             |