

Manual de Instalação

Sistema TVR™ II DC Inversor - R410A

Unidade Externa da Bomba de Calor 180-290 MBH 380-415V/50Hz/3F 180-190 380-415V/60Hz/3F

AADVERTÊNCIA DE SEGURANÇA

Somente técnicos qualificados podem instalar e prestar assistência ao produto. A instalação, inicialização e manutenção dos sistemas de calefação, ventilação e ar condicionado podem oferecer riscos, pois seu manuseio requer conhecimentos técnicos e capacitação específica. A instalação, ajuste ou alterações no equipamento por pessoas não capacitadas pode levar à óbito ou causar graves lesões. Ao manusear o equipamento, observe todas as medidas de precaução contidas nos manuais, etiquetas e outras marcas de identificação presentes no equipamento.

Advertências, Precauções e Avisos

Advertências, Precauções e Avisos. Deve se observar que, em intervalos apropriados deste manual, aparecem indicações de advertência, precaução e aviso. As advertências servem para alertar os instaladores quanto aos perigos potenciais que podem resultar em lesões pessoais ou mesmo a morte. As precauções foram projetadas para alertar sobre situações perigosas que podem resultar em lesões pessoais, e os avisos indicam situações em que pode haver danos ao equipamento ou na propriedade.

Sua segurança pessoal e a operação apropriada desta máquina depende da estrita observação destas precauções.

Leia este manual totalmente antes de operar ou dar manutenção a esta unidade.

ATENÇÃO: Advertências, Precauções e Avisos aparecem em seções apropriadas deste documento. A leitura minuciosa é recomendada:

A ADVERTÊNCIA

Indica uma situação potencialmente perigosa que, caso não for evitada, pode resultar na morte ou em lesões graves.

▲ PRECAUÇÃO

Indica uma situação potencialmente perigosa que, caso não for evitada, pode resultar em lesões menores ou moderadas. Também serve para alertar contra práticas não seguras.

AVISO:

Indica uma situação que poderia resultar em danos somente ao equipamento ou materiais.

Importante

Preocupações ambientais!

Os cientistas têm demonstrado que determinados produtos químicos fabricados pelo homem, ao serem liberados na atmosfera, podem afetar a camada de ozônio, que é encontrada naturalmente na estratosfera. De fato, alguns dos produtos químicos identificados que podem afetar a camada de ozônio são refrigerantes que contém cloro, flúor e carbono (CFC), e também àqueles que contém hidrogênio, cloro, flúor e carbono (HCFC). Nem todos os refrigerantes que contêm esses compostos têm o mesmo impacto potencial sobre o meio ambiente. A Trane defende o manuseio responsável de todos os refrigerantes, inclusive dos substitutos industriais dos CFC, como os HCFC e os HFC.

Práticas responsáveis no manuseio de refrigerantes!

A Trane considera que as práticas responsáveis no manuseio de refrigerantes são importantes para o meio ambiente, para os nossos clientes e para a indústria de ar condicionado. Todos os técnicos que manuseiem refrigerantes devem ter a certificação correspondente. A lei federal sobre limpeza

do ar (Ata Federal de Ar Limpo, Seção 608) define os requerimentos de manuseio, recuperação e reciclagem de determinados refrigerantes e dos equipamentos que utilizam estes procedimentos de serviço. Além disso, alguns estados ou municípios podem ter regulamentações adicionais necessárias para cumprir com o manuseio responsável de refrigerantes. É necessário conhecer e respeitar as normas vigentes sobre o assunto.

A ADVERTÊNCIA

É exigida derivação apropriada à terra!

Todo cabeamento em campo DEVERÁ ser realizado por pessoal qualificado. O cabeamento indevidamente desviado à terra resulta em riscos de INCÊNDIO e CHOQUE. Para evitar esses perigos, devem ser cumpridos os requisitos de instalação e aterramento do cabeamento, de acordo ao descrito pela NEC e pelas normas elétricas municipais e estaduais. A omissão do cumprimento dessas normas pode resultar na morte ou em lesões graves.

AADVERTÊNCIA

Equipamento de Proteção Individual (EPI)!

A instalação e manutenção desta unidade pode resultar na exposição a perigos elétricos, mecânicos e químicos.

- Antes de realizar a instalação ou manutenção desta unidade, os técnicos DEVEM colocar o equipamento de proteção (EPI) recomendado para a tarefa que será realizada. SEMPRE consulte as normas e padrões MSDS e OSHA apropriados para a utilização correta do equipamento EPI.
- Quando trabalhar com produtos químicos perigosos ou perto deles, SEMPRE consulte as normas e padrões MSDS e OSHA apropriados para obter informações sobre os níveis de exposição pessoais permitidos, a proteção respiratória apropriada e as recomendações de manipulação desses materiais.
- Se existir risco de produção de arco elétrico, os técnicos DEVEM colocar o equipamento de proteção individual (EPI) estabelecido pela norma NFPA70E de proteção contra arcos elétricos ANTES de realizar a manutenção da unidade.

A falta de cumprimento das recomendações pode resultar em lesões graves e inclusive na morte.

Refrigerante R-410A trabalha a pressão maior que a do refrigerante R-22!

A unidade descrita neste manual utiliza refrigerante R-410A, que opera em pressões mais altos do que o refrigerante R-22. Utilize SOMENTE equipamento de serviço ou componentes classificados para uso com esta unidade. Se tiver dúvidas específicas relacionadas ao uso do Refrigerante R-410A, consulte seu representante local Trane.

Não obedecer a recomendação de utilizar equipamento de serviço ou componentes classificados para o refrigerante R-410A pode resultar na explosão de equipamentos ou componentes a alta pressão de R-410A, resultando na morte, lesões graves ou danos ao equipamento.

- Antes de tentar instalar o equipamento, leia este manual com cuidado. A instalação e a manutenção desta unidade devem ser realizadas somente por técnicos de serviço qualificados.
- Desligue toda a energia elétrica, inclusive os pontos de desconexão remota antes de fazer a manutenção.
 Siga todos os procedimentos de bloqueio e de identificação com etiquetas para garantir que a energia não possa ser ligada inadvertidamente. A inobservância desta advertência antes da manutenção pode provocar a morte ou lesões graves.
- Revise a placa de identificação da unidade para conhecer a classificação do abastecimento de energia que será aplicado tanto à unidade quanto aos acessórios. Consulte o manual de instalação de tubulação auxiliar para sua instalação apropriada.
- A instalação elétrica deve cumprir todas as normas municipais, estaduais e nacionais. Providencie uma tomada de energia elétrica independente com fácil acesso à chave principal. Verifique que todo o cabeamento elétrico esteja bem conectado, apertado e distribuído adequadamente dentro da caixa de controle. Não utilize quaisquer outro tipo de cabeamento que não seja o especificado. Não modifique o comprimento do cabo de abastecimento de energia nem utilize extensões. Não compartilhe a conexão de energia principal com outros aparelhos.
- Ligue primeiro o cabeamento da unidade externa e, depois, o cabeamento das unidades interna.
 O cabeamento deverá estar afastado, como mínimo, um metro dos aparelhos elétricos ou rádios, para evitar interferências ou ruídos.
- Instale a tubulação de drenagem apropriada para a unidade, aplicando o isolamento adequado ao redor de toda a tubulação para evitar a condensação. Durante a instalação da tubulação, evite a entrada de ar no

circuito de refrigeração. Faça testes de fuga para verificar a integridade de todas as conexões de tubo.

- Evite instalar o ar condicionado em locais ou áreas submetidas a alguma das seguintes condicões:
 - Presença de fumaça e gases combustíveis, gases sulfúricos, ácidos ou líquidos alcalinos ou outros materiais inflamáveis:
 - Elevada flutuação de voltagem;
 - · Transporte veicular;
 - · Ondas eletromagnéticas

Quando instalar a unidade em áreas reduzidas, adote as medidas necessárias para evitar que o excesso de concentração de refrigerante exceda os limites de segurança no caso de um vazamento de refrigerante. O excesso de refrigerante em ambientes fechados pode causar falta de oxigênio. Consulte seu fornecedor local para maiores informações.

Utilize os acessórios e peças especificadas para a instalação; caso contrário podem ocorrer falhas no sistema, vazamento de água e fuga elétrica.

Recebimento do equipamento

Quando receber a unidade, inspecione o equipamento para verificar se não houve danos durante o embarque. Se forem detectados danos visíveis ou ocultos, submeta um relatório por escrito à empresa transportadora.

Verifique se o equipamento e acessórios recebidos estão de acordo com o discriminado no(s) pedido(s) de compra.

Mantenha os manuais de operação à mão para consultálos a qualquer momento.

Tubulação de refrigerante

Verifique o número de modelo para evitar erros de instalação.

Utilize um analisador múltiplo para controlar as pressões de trabalho e acrescentar refrigerante durante a posta em marcha da unidade.

A tubulação deverá ter diâmetro e espessura adequados. Durante o processo de solda, faça circular nitrogênio seco para evitar a formação de óxido de cobre.

Para evitar condensação na superfície das tubulações, estas deverão ser corretamente isoladas (verificar a espessura do material de isolamento). O material de isolamento deverá ter condições de suportar as temperaturas de trabalho (para modo de frio e de calor).

Ao terminar a instalação das tubulações, deverá ser aplicado nitrogênio e, depois, deverá ser feito um teste de vácuo na instalação. Posteriormente, fazer vácuo e controlar com vacuômetro.

Advertências, Precauções e Avisos

Cabeamento elétrico

Aterrar a unidade adequadamente.

Não ligue a conexão em terra à tubulação de gás ou de água, a cabo telefônico ou a pára-raios. A conexão à terra incompleta pode causar choque elétrico.

Selecione o abastecimento de energia e o tamanho do cabeamento de acordo com as especificações do projeto.

Refrigerante

Deverá adicionar-se refrigerante de acordo ao diâmetro e longitudes reais das tubulações de líquido do sistema. Consulte a **Tabela 13** ou a tabela anexada na tampa do equipamento.

Insira na caixa de registro do equipamento a quantidade de refrigerante adicional, o comprimento real da tubulação e a distância entre a unidade interna e a unidade externa para referências futuras.

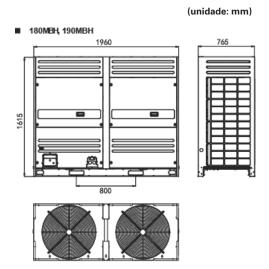
Teste operacional

Antes de por em marcha a unidade, é OBRIGATÓRIO energizar previamente a unidade durante 24 horas. Retire as peças de poliestireno PE utilizadas para proteger o condensador. Tenha cuidado de não danificar a serpentina porque isso pode afetar o rendimento do trocador de calor.

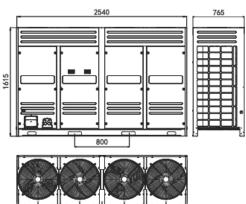
Conteúdo

Advertências, Precauções e Avisos	2
Instalação	6
Localização de montagem da unidade	7
Tabela 1	8
Disposição de unidades	9
Instalação do Conjunto de Ventilação	11
Haste da unidade	13
Tubulação de Refrigerante	14
Descrição da válvula	14
Tabela 2. Distância e diferença de altura da tubulação de refrigerante	14
Tabela 3. Seleção do tipo de tubulação de refrigerante	15
Tabela 4. Tamanho dos tubos conectores para a unidade externa 410A	15
Tabela 5. Tamanho dos tubos conectores para a unidade interna 410A	16
Tabela 6. Tamanho da tubulação de ramificação interna e conector	16
Remoção de terra ou água da tubulação	17
Teste de Tensão	17
Procedimento de Vazamento	17
Para colocar refrigerante	17
Tabela 7	17
Cabeamento elétrico	18
Detecção de falhas	20
Tabela 8. Unidade 180 e 190 MBH	20
Tabela 9. Unidade 290 MBH	21
Tabela 10.Unidade 180 e 190 MBH	23
Tabela 11	24
Cabeamento de Força da Unidade Externa	25
Tabela 12	25
Tabela 13. Cabeamento de Força da Unidade Interna	26
Sistema de controle	27
Cabo de Comunicação entre as Unidades Interna/Externa	27
Teste operacional	28

Instalação


Ao receber a unidade, verifique se não houve danos durante o embarque. Verifique se é a unidade certa para a aplicação programada.

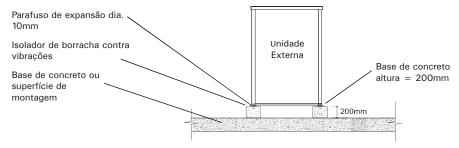
Verifique que a unidade veio acompanhada dos seguintes acessórios:


- (1) Manual de Instalação da Unidade Externa
- (1) Manual de Operação da Unidade Externa Entregar ao cliente
- (1) Manual de Operação da Unidade Interna Entregar ao cliente
- (1) Bolsa de parafusos acessórios para o serviço
- (1) Parafuso de cabeça chata
- (1) Subconjunto do porto de serviço para teste de fugas
- (1) Cotovelos 90° para conexão de tubos
- (8) Bujões de Vedação para limpeza de tubulação
- (1) Tubo conector acessório conectar no lado da tubulação de líquido

Dimensões da Unidade Externa

Figura 1.

■ 290MBH



Localização de montagem da unidade

- Posicione a unidade de acordo com as seguintes recomendações:
- Coloque a unidade em um local seco e bem ventilado.
- Assegure que o ruído de operação e o ar de descarga da unidade não afetam as pessoas ou a propriedade.
- Verifique se a unidade externa n\u00e3o est\u00e1 exposta \u00e0 radia\u00e7\u00e3o direta de nenhuma fonte de alta temperatura.
- Não instale a unidade externa em um local altamente contaminado, pois pode bloquear o funcionamento do trocador de calor.
- Evite expor a unidade à presença de gases sulfúricos.
- Monte a unidade sobre uma base de concreto ou uma estrutura de aço, assegurando que esta tenha a capacidade de suportar o peso total da unidade externa.
- A unidade ou unidades externas devem estar niveladas corretamente.

Figura 2.

⚠ PRECAUÇÃO

- Para construir os suportes de concreto que devem ser colocados sobre a superfície de concreto, consulte o diagrama da construtura e utilize as medidas exatas em campo.
- Forneça um canal de drenagem do equipamento ao redor da base, para permitir que a água flua livremente afastada da montagem da unidade.
- A figura a seguir mostra a distância necessária para instalar os parafusos de montagem da unidade:mm.
- ATENÇÃO: Coloque as unidades externas pertencentes ao mesmo sistema em uma superfície de nível equitativo.

Figura 3. Posição e distância entre os parafusos de montagem

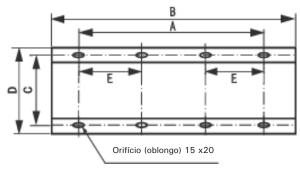


Tabela 1.

Tamanho / MBH	180 e 190	290
Α	1830	2410
В	9601	2540
С	736	736
D	765	765
E	830	950

Recomendações para a instalação

- Instale bases isoladoras de borracha de acordo com as especificações do desenho
- Assegure um contato próximo entre a unidade externa e a base de montagem, para evitar as vibrações e a emissão de ruído;
- · Assegure que a unidade tenha sido devidamente desviada para a terra;
- Antes da colocação em marcha da unidade, evite de abrir as válvulas das linhas de líquido e gás.
- Verifique se o local da obra proporciona espaço suficiente para os operários de manutenção.

Espaço para a instalação da unidade externa

- Ao instalar a unidade, considera os mandados de obrigatoriedade para manutenção da unidade. Ver Figura 4.
- Instale o ponto de abastecimento de energia em um dos lados da unidade externa.
 Para se referir ao procedimento de instalação, consulte o manual de instalação do dispositivo de abastecimento de energia.
- Caso exista algum obstáculo acima de qualquer parte da unidade externa, vase-a Figura 5.

Figura 4. Vista superior da unidade

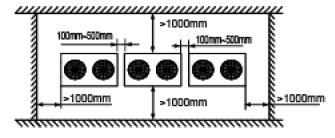
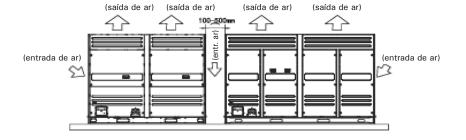



Figura 5. Superfície de instalação e manutenção

Disposição de unidades

Quando a altura da unidade externa ultrapassa os obstáculos de elementos adjacentes superiores:

Figura 6. Uma Fileira

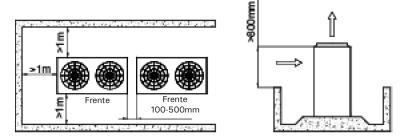
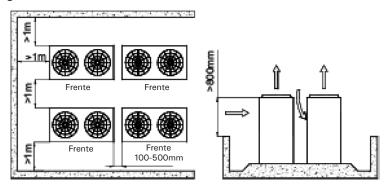
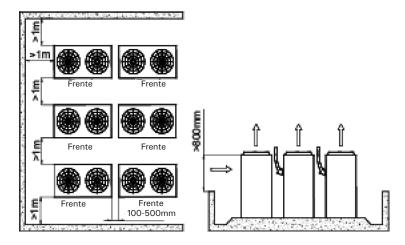
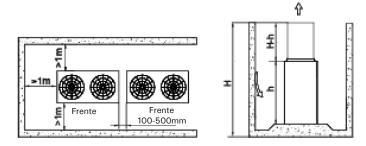


Figura 7. Duas Fileiras


Figura 8. Mais de Duas Fileiras

 Quando a altura da unidade externa (h) é inferior a altura dos elementos que a cercam (H), para evitar um "curto-circuito" de ar, é recomendado adicionar uma saída de ar na unidade externa, uma peça que suplemente a diferença de altura e permita descarregar o ar quente que saí da unidade externa sem provocar o mau funcionamento da unidade. A altura da peça é a diferenca das alturas (H-h).

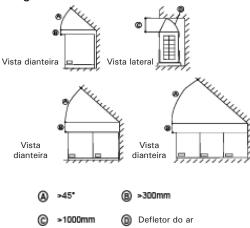
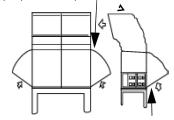


Figura 9.

 Caso existam obstáculos acima da unidade, estes devem ter uma distância de 800 mm da parte superior da unidade. Do contrário, deve-se instalar um dispositivo de extração mecânica.


Figura 10.

Em áreas de inverno, instale proteção contra o acúmulo de neve. Observe a imagem abaixo.
 Instale o ponto de montagem com elevação suficiente para ultrapassar o nível limite de neve,
 e instala uma capa protetora na entrada e saída de ar.

Figura 11.

Capa protetora para saída de ar

Capa protetora para entrada de ar

Instalação do Conjunto de Ventilação

O conjunto de ventilação (duto) é instalado em campo. Realize a instalação de acordo com os métodos mostrados na imagem:

Método 1

Figura 12. Instalação do modelo 180-190 MBH

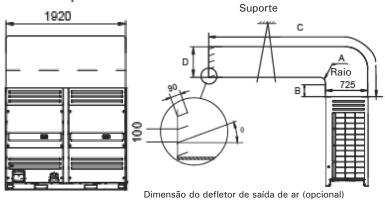


Figura 13.

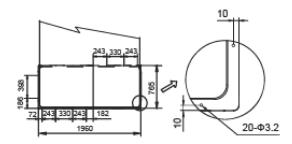
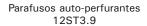
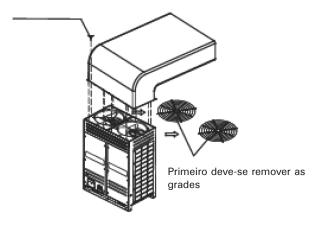




Figura 14.

Unidade: mm

Α	A≥300
В	B≥250
С	C ≤ 10000
D	600≤D≤760
Е	E = A + 725
θ	θ ≤ 15°

Método 2

Figura 15. Instalação do modelo 290MBH

Dimensão do defletor de saída de ar (exigido)

(unidade: mmn)

Figura 16.

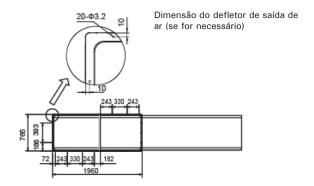


Figura 17

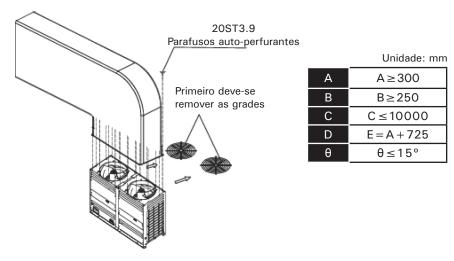
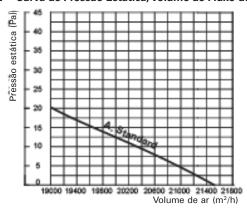



Figura 18.

■ Curva de Pressão Estática, Volume de Fluxo de Ar

OBSERVAÇÃO:

- Antes de instalar o defletor de ar, assegure de retirar o material de acondicionamento para evitar obstrução da passagem de ar.
- O defletor de ar deve ajustar-se ao ângulo máximo de 15º. Caso este ângulo seja ultrapassado, o desempenho do sistema será afetado.
- É permitido apenas um cotovelo na configuração de duto de ar. Do contrário, a operação do sistema será afetada

Haste da Unidade

- Não desmonte a paleta de acondicionamento da unidade antes de içá-la. Se a máquina não possuir material de acondicionamento protetor, forneça-o em campo antes de amarrar a unidade. Utilizando cabos ou cordas, suspenda a máquina mantendo-a em posição nivelada durante as manobras de hasteamento. A inclinação da unidade durante a manobra não deverá ultrapassar 30°.
- Utilize 4 correntes ou cabos ou correias de dia. 6mm para deslocar a unidade.
- Verifique o centro de gravidade durante o içamento para evitar que o equilíbrio se perca durante a manobra. Para prevenir rachaduras na unidade, coloque protetores entre o cabo ou correntes e nas extremidades da unidade.

Figura 19. Utilize um elevador para deslocar a unidade

Tubulação de Refrigerante

Descrição da válvula

Figura 20. Unidades 180-190 MBH

Válvula de flutuação na parte de gás

Tubo conector com porta de ventilação à gás (a dimensão de tubo conector é de Φ31,8)

Porta de medição (recarregar refrigerante)

Válvula de retenção na parte líquida

Tubo conector com o lado do líquido (acessório) (a dimensão do tubo conector é de Φ19,1)

(unidade: mmn)

Figura 21. Unidades 290 MBH

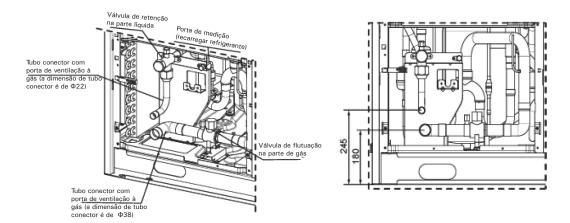


Tabela 2. Distância e diferença de altura da tubulação de refrigerante

	,	Valor permitido		Tubulação
	Comprimento total da tubulação (real)	<290 MBH	350m	L1 + L2 +
		>290 MBH	500m	L3+L4+L5+L6 + L7+L8+a+b+c+ d+e +f+g + h + i
Comprimento da tubulação	Comprimento Máximo	Comprimento Real	150m	L1 +
		Comprimento Equivalente	175m	L5+L6+L7+L8+i
	Comprimento Equivalente de linha (ponto mais distante da primeira ramificação do tubo inicial)		40m	L5+L6 + L7+L8+i
Diferença de Altura Máxima	Altura máxima entre UI e UE	Altura da unidade externa (superior)	70m	
	Attura maxima entre or e oc	Altura da unidade externa (inferior)	40m	
	Altura máxima entre as unidado	es internas	15m	

A diferença de altura entre a unidades interna (numa on mais nuidades)

A diferença de altura entre a unidade (a bartir da biumeira tamiticação de tripo da liuha)

Comprimento edinalente máximo do tripo F ≥ 40m

Combrimento edinalente máximo do tripo F ≥ 40m

Combridade internalente máximo do tripo F ≥ 40m

Figura 22. Comprimento e altura da tubulação de refrigerante

Tabela 3. Seleção do tipo de tubulação de refrigerante

Tubulação principal	L1
Ramificação do tronco principal	L2, L3, L4, L5, L6
Ramificação da tubulação da unidade interna	a, b, c, d, e, f, g
Ramificação de tubulação entre tubulação e unidade interna	A, B, C, D, E, F

Observação: O comprimento equivalente para todas as linhas de fluido é LI+L2+L3... +L7+L8...+L9+0,5x6 (O comprimento equivalente para cada tubo de ramificação é 0,5)

Figura 23.

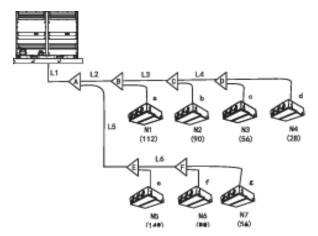


Tabela 4. Tamanho dos tubos conectores para a unidade externa 410A

Capacidade MBh	Tamanho da tubulação principal (mm) quando o comprimento equivalente da tubulação é de <90m			
	Lado do gás	Lado do líquido	Lado do gás	Lado do líquido
180 - 190 MBh	Ф 31,8	Ф 15,9	Ф 31,8	Ф 19,1
290 MBh	Ф 34.9	Ф 19,1	Ф 38,1	Ф 22,2

Tubulação de Refrigerante

Tabela 5. Tamanho dos tubos conectores para a unidade interna 410A

Capacidade da	Tamanho da tubula	Ramificação disponível	
unidade interna	Lado do gás	Lado do líquido	do tubo
MBH < 57	Ф 19,1	Ф 9,5	TRDK056 HP
57≤57<78	Ф 22,2	Ф 9,5	TRDK112 HP
78 ≤MBH<113	Ф 22,2	Ф 12,7	TRDK112 HP
113≤MBH<157	Ф 28,68	Ф 12,7	TRDK225 HP
157≤MBH<225	Ф 28,6	Ф 15,9	TRDK225 HP
225≤MBH<314	Ф 34,9	Ф 19,1	TRDK314 HP

Tabela 6. Tamanho da tubulação de ramificação interna e conector

Capacidade da Unidade	O tamanho da ramificação da tubulação é de <8m (dia. externo)			ficação da tubulação dia. externo)
interna A	Lado do gás	Lado do líquido	Lado do gás	Lado do líquido
A≤45	Ф 12,7	Ф 6,4	Ф 15,9	Ф 9,5
A≥56	Ф 15,9	Ф 9,5	Ф 19,1	Ф 9,5

Observação: Para uma eficácia otimizada da unidade interna, limite o comprimento da tubulação ao máximo de 5m. Caso ultrapasse os 8 m, a eficácia será afetada. O comprimento em excesso de 20m não é permitida.

<u>Exemplo:</u> Observemos a amostra da unidade de 190 MBH na **Figura 23**(considerando que o comprimento equivalente da tubulação neste sistema é de 100m, o comprimento de cada tubo ramificado será de 5m.)

- Tubulação de ramificação a-g(Tabela 3) com comprimento de 5m. Observar tubulação de ramificação a,b, c, e, f,g na Tabela 2 cujos diâmetros são Φ15,9/Φ9,5; tubo de ramificação d, cujo diâmetro é de Φ12,7/Φ6,4.
- 2. A tubulação principal L6 à jusante da unidade interna N6 e N7, relata uma capacidade de 80+56=136<166 MBH. Consulte a Tabela 5 para observar que a L6 tem um diâmetro de tubulação de Φ19,1/Φ9,5; por conseguinte selecione TRDK056 HP para a tubulação de ramificação R</p>
- 3. A tubulação principal L5 à jusante da unidade interna N5 N7, relata uma capacidade de 140+80+56=276<330 MBH. Consulte a Tabela 5 para observar que a L5 tem um diâmetro de tubulação de Φ22,2/Φ12,7; por conseguinte selecione TRDK112 HP para a tubulação de ramificação E.</p>
- 4. A tubulação principal L4 à jusante da unidade interna N3 e N4, relata uma capacidade de 28+56=84 MBH<166. Consulte a Tabela 5 para observar que a L4 tem um diâmetro de tubulação de Φ19,1/Φ9,5; por conseguinte selecione TRDK056 HP para a tubulação de ramificação D.
- 5. A tubulação principal L3 à jusante da unidade interna N2 N4, relata uma capacidade de 90+56+28=174<230 MBH. Consulte a Tabela 5 para observar que a L3 tem um diâmetro de tubulação de Φ22,2/Φ9,5; por conseguinte selecione TRDK112 HP para a tubulação de ramificação C.
- 6. A tubulação principal L2 à jusante da unidade interna N1 N4, relata uma capacidade de 112+90+56+28=286<330 MBH. Consulte a Tabela 5 para observar que a L2 tem um diâmetro de tubulação de Φ22,2/Φ12,7; por conseguinte selecione TRDK112 HP para a tubulação de ramificação B.</p>
- 7. O conjunto da tubulação de ramificação A jusante as unidades internas N1 N7, relata uma capacidade de 40+80+56+112+90+56+28=562<660 MBH. Consulte a Tabela 5 para observar que a L3 tem um diâmetro de tubulação de Φ22,2/Φ9,5; por conseguinte selecione TRDK225 HP para a tubulação de ramificação A.</p>
- 8. Confirmação da tubulação de ramificação principal: Dado que o comprimento equivalente da tubulação na **Figura 23** é de 100m>90m e que a capacidade da unidade externa é de 190 MBH, podemos deduzir que a dimensão da tubulação principal é de Φ31,8/Φ19,1 em conformidade com a **Tabela 4**.

Observação: Para maiores informações de dimensões e informações de tubulação, leia o manual de instalação da tubulação de ramificação.

Remoção de Terra ou Água da Tubulação

Antes de conectar as unidades internas, assegure-se de eliminar a terra, umidade e qualquer outra partícula estranha das tubulações, com o auxílio de Nitrogênio em alta pressão. Nunca utilize o refrigerante da unidade para esta operação. A não realização deste procedimento poderá ocasionar potenciais obstruções no sistema, além de falhas no funcionamento do mesmo e a consequente perda da garantia.

Teste de Hermeticidade

- A precisão do teste deve ser de 40 kg/cm2 (568 psig). O sistema deve permanecer com precisão durante 48 horas (verificar a temperatura ao início e ao final do teste com o mesmo termômetro para evitar erros de leitura).
- Conecte a tubulação no lado de pressão alta junto a válvula de alta pressão.
- Solde a tubulação do lado da baixa pressão, que contém a conexão ao porto de serviço.
- Carregue o nitrogênio em um tanque com válvula de alta pressão e conexão com manômetro.
- Ao terminar o teste, solde a tubulação e válvula esférica de baixa pressão no lado da baixa pressão.

⚠ PRECAUÇÃO

- Para efetuar o teste de hermeticidade, utilize nitrogênio com pressão de 4,3 Mpa (620 psig).
- Não conecte a tubulação e a válvula no lado da baixa pressão sem antes ter carregado o nitrogênio.
- Durante a soldagem, envolva a válvula de baixa pressão e as válvulas niveladoras em um pano molhado.

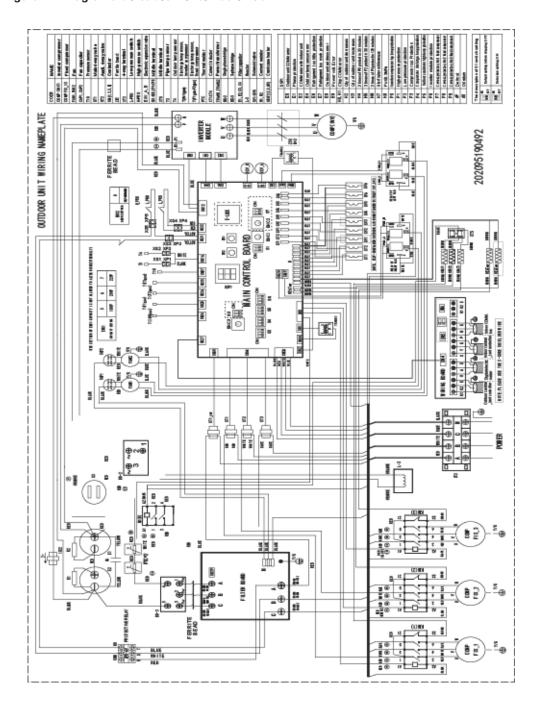
É terminantemente proibido usar oxigênio para o teste de hermeticidade.

Procedimento de Esvaziamento

- Para a ação de esvaziamento, utilize uma bomba de vácuo ao invés de refrigerante.
- O vácuo deve ser efetuado simultaneamente pelo lado de líquido e gás. A leitura do vacuômetro deve indicar 250 micrómetros.

Para colocar refrigerante

Calcule a quantidade de refrigerante R410 a ser adicionado de acordo com o diâmetro e comprimento da conexão de tubulação de líquido da unidade externa/interna. Empregue somente refrigerante R410A. Veja a **Tabela 7**.


Tabela 7

Tamanho da tubulação do lado líquido	Quantidade de refrigerante a ser acrescentado em Kg. por metro
Ф 6,4	0,023kg
Ф 9,5	0,060kg
Ф 12,7	0,120kg
Ф 15,9	0,180kg
Ф 19,1	0,270kg
Ф 22,2	0,380kg
Ф 28,6	0,680kg

Cabeamento elétrico

Figura 24. Diagrama do cabeamento 180 e 190 MBH

O TO MAIN CONTROL BOARD HOX -- () ŧ

Figura 25. Diagrama do cabeamento 180 e 190 MBH

Detecção de falhas

Tabela 8. Unidade 180 e 190 MBH

Número Serial	Exibido no visor	Observações
1	Direção da unidade externa	0
2	Capacidade da unidade externa	180, 190
3	Quantidade de unidades externas	Aparece somente na unidade principal
4	Cap. total de unidades externas	Capacidade requerida
5	Cap. de Requerim. das unidades internas	Aparece somente na unidade principal
6	Cap. corrigida das unidades internas (depois da correção)	Aparece somente na unidade principal
7	Modo de Funcionamento	0,2,3,4
8	Cap. real de funcionamento da unidade externa	Capacidade requerida
9	Velocidade da ventoinha	0,1,2,3,4,5,6
10	Temp. Média T2	Valor real
11	Temp. da tubulação T3	Valor real
12	RESERVADO	
13	Temp. ambiente T4	Valor real
14	Temp. Descarga do compressor inversor	Valor real
15	Temp. Descarga do compressor fixo nº1	Valor real
16	Temp. Descarga do compressor fixo nº 2	Valor real
17	Temp. Descarga do compressor fixo nº 3	Valor real
18	Consumo corrente do compressor inversor	Valor real
19	Consumo corrente do compressor fixo nº 1	Valor real
20	Consumo corrente do compressor fixo nº 2	Valor real
21	Consumo corrente do compressor fixo nº 2	Valor real
22	Pressão aérea de descarga	Valor real X 0,1 MPa
23	Grau de abertura da válv. Exp. Elét. A	Valor real X 8
24	Grau de abertura da válv. Exp. Elét. B	Valor real X 8
25	Quantidade de unidades internas	Valor real
26	Último erro ou código de proteção	Sem proteção ou erro, realizado 00
27		Fim da detecção

• Implementação normal:

Implemente a quantidade de unidades internas com capacidade de comunicação com a unidade externa em modo de espera. Ao receber o requerimento de capacidade, implemente a frequência de operação do compressor inversor.

- Modo de funcionamento: 0 = DESLIGADO/VENTOINHA; 2-FRIO; 3—QUENTE; 4 -Arrefecimento forcado
- **Velocidade do ventilador**:0—esquerda e direita DESLIGADO; 1-esquerda *desligado e* direita *baixo*;2-esquerda *desligado e* direita *alto*; 3-esquerda *baixo* e direita *desligado*; 4- esquerda *alto* e direita desligado; 5- esquerda baixo e direita baixo; 6-esquerda *alto* e direita *alto*.
- Abertura PMV: contagem de pulsos = valor implantado x 8
 - ENC1: Botão de ajuste da capacidade da unidade externa
 - ENC2: Botão de ajuste de direção da unidade externa
 - ENC3: Botão de ajuste (ADDR) da rede
 - SW1: Botão de arrefecimento forçado
 - SW2: Botão de estado

Tabela 9. Unidade 290 MBH

Número Serial	Visor	Exibido no visor	Observações
1	1	Direção da unidade externa	0
2	2	Capacidade da unidade externa	28,30,32
3	3	Quantidade de unidades externas	Aparece somente na unidade principal
4	4	Cap. total de unidades externas	Capacidade requerida
5	5	Cap. de Requerim. das unidades internas	Aparece somente na unidade principal
6	6	Cap. corrigida das unidades internas (depois da correção)	Aparece somente na unidade principal
7	7	Modo de Funcionamento	0,1,2,3,4
8	8	Cap. real de funcionamento da unidade externa	Capacidade requerida
9	9	Velocidade da ventoinha	A/B: 0,1,2,3,4,5,6,7,8,9
10	0	Temp. Média T2/T2B	Valor real
11	1	Temp. da tubulação T3	Valor real
12	2	Temp. ambiente T4	Valor real
13	3	Temp. Descarga do compressor inversor	Valor real
14	4	Temp. Descarga do compressor fixo nº1	Valor real
15	5	Temp. Descarga do compressor fixo nº 2	Valor real
16	6	Temp. Descarga do compressor fixo nº 3	Valor real
17	7	Temp. Descarga do compressor fixo nº 4	Valor real
18	8	Temp. Descarga do compressor fixo nº 5	Valor real
19	9	Consumo corrente do compressor inversor	Valor real
20	0	Consumo corrente do compressor fixo nº 1	Valor real
21	1	Consumo corrente do compressor fixo nº 2	Valor real
22	2	Consumo corrente do compressor fixo nº 3	Valor real
23	3	Consumo corrente do compressor fixo nº 4	Valor real
24	4	Consumo corrente do compressor fixo nº 5	Valor real
25	5	Pressão aérea de descarga	Valor real X 0,1 MPa
26	6	Grau de abertura da válv. Exp. Elét. A, C	Valor real x 8
27	7	Grau de abertura da válv. Exp. Elét. B, D	Valor real x 8
28	8	Limitação de unidades internas no modo programado	0,1,2,3,4
29	9	Quantidade de unidades internas	Valor real
30	0	Último erro ou código de proteção	Sem proteção ou erro, realizado 00
31			Fim da detecção

• Implementação normal:

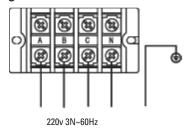
Implemente a quantidade de unidades internas com capacidade de comunicação com a unidade externa em modo de espera. Ao receber o requerimento de capacidade, implemente a frequência de operação do compressor inversor.

• Modo de funcionamento: 0 = DESLIGADO/VENTOINHA; 2-FRIO; 3—QUENTE; 4 - Arrefecimento forçado

• Velocidade da ventoinha:

TVR-SVN08A-PB

- 0-parada da ventoinha;
- 1-9 velocidade aumenta sequencialmente;
- 9 representa a velocidade máxima
- PWV Abertura da Válv. Exmp.: Contagem de pulsos = valor implantado x 8


ENC3: Botão de ajuste da rede

SW1: Botão de arrefecimento forçado

SW2: Botão de estado
 21

Cabeamento elétrico

Figura 26.

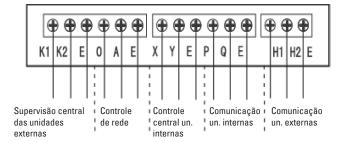
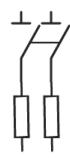



Figura 27.

ATENÇÃO!

O circuito de abastecimento de energia (responsabilidade do cliente) desta unidade, deverá incluir um interruptor de pólo de energia para desligar a unidade em serviço de manutenção (segundo a norma IEC 60335-2-40: 2002).

Tabela 10. Unidade 180 e 190 MBH

Número	Conteúdo
1	Transformador detector de corrente, compressor inversor
2	Transformador detector de corrente, Compressor Fixo nº 1-3
3	Porta detectora de temperatura de descarga do Compressor fixo nº 3
4	Porta detectora de temperatura de descarga do Compressor fixo nº 2
5	Porta detectora de temperatura de descarga do Compressor fixo nº 1
6	Porta detectora de temperatura de descarga do Compressor inversor
7	Reservado
8	Reservado
9	Saída de tensão do Transformador nº 1
10	Porta detectora de sequência de fase
11	Fornecimento de energia Fase-C
12	Entrada de tensão do Transformador nº 1
13	Entrada de tensão do Transformador nº 2
14	Velocidade alto da ventoinha do lado direito
15	Velocidade baixa da ventoinha do lado direito
16	Saída de carga
17	Saída de carga
18	Velocidade baixa da ventoinha do lado esquerdo
19	Velocidade alta da ventoinha do lado esquerdo
20	Sinal da porta da válvula de expansão eletrônica A
21	Sinal da porta da válvula de expansão eletrônica B
22	Saída de força do transformador nº 2
23	Sinal da porta do módulo inversor
24	Transformador detector de corrente
25	Porta detectora de tensão do módulo inversor
26	Conector de energia do cartão principal
27	Sinal da porta de entrada do interruptor detector de alta pressão
28	Sinal da porta de entrada do interruptor detector de baixa pressão
29	Sensor de pressão
30	Porta detectora de temp. externa e temp. da unidade externa
31	Comunicação entre as unidades externa e interna e porta de comunicação da rede

Cabeamento elétrico

Tabela 11.

Número	Conteúdo					
1	Transformador detector de corrente, Compressor Fixo nº 1-5					
2	Porta detectora de temperatura de descarga do Compressor fixo nº 3					
3	Porta detectora de temperatura de descarga do Compressor fixo nº 2					
4	Porta detectora de temperatura de descarga do Compressor fixo nº 1					
5	Porta detectora de temperatura de descarga do Compressor inversor					
6	Porta detectora de temperatura de descarga do Compressor fixo nº 4					
7	Porta detectora de temperatura de descarga do Compressor fixo nº 5					
8	Saída de tensão do Transformador B					
9	Fornecimento de força trifásica					
10	Entrada de força do transformador A					
11	Entrada de força do transformador B					
12	Porta de controle da ventoinha AC					
13	Saída de carga					
14	Saída de carga					
15	Porta da válvula de expansão elét. A					
16	Porta da válvula de expansão elét. B					
17	Porta da válvula de expansão elét. C					
18	Saída de carga					
19	Porta da válvula de expansão elét. D					
20	Saída de carga					
21	Saída de carga					
22	Porta de controle da ventoinha DC					
23	Saída de força do transformador B					
24	Porta detectora de tensão do módulo inversor					
25	Sinal da porta do módulo inversor					
26	Ponto de conexão de força do cartão principal					
27	Sinal da porta de entrada do interruptor detector de baixa pressão					
28	Sinal da porta de entrada do interruptor detector de alta pressão					
29	Sensor de pressão					
30	Porta detectora de temp. externa e temp. da unidade externa					
31	Reservado					
32	Porta de comunicação					
33	Transformador detector de corrente, compressor inversor					

⚠ PRECAUÇÃO

- A fonte de abastecimento de energia deve ser independente tanto para a unidade interna como para a unidade externa.
- O abastecimento de energia deve contar com cabeamento de circuito ramificado, com protetor de corrente de fuga e interruptor termomagnético.
- A fonte de abastecimento de energia, o protetor de corrente de fuga, e os interruptores termomagnéticos das unidades internas conectadas a mesma unidade externa, devem ser de classificação universal. Conecte o abastecimento total de energia das unidades internas de um sistema, dentro do mesmo circuito.
- Direcione o cabeamento de comunicação entre as unidades interna e externas, na mesma direção do sistema de tubulação do refrigerante.
- Sugere-se utilizar um cabeamento de 3 fios blindados para o cabeamento de comunicação entre as unidades internas e externas. Não há cabo de fio múltiplo disponível.
- Todo o cabeamento deverá cumprir com os códigos nacionais e estaduais.
- A instalação do cabeamento de força deve ser realizada exclusivamente por técnicos profissionais autorizados.

Cabeamento de Força da Unidade Externa

A fonte de fornecimento elétrico deve ser independente (sem painel de fornecimento elétrico) Confira a **Tabela 12**.

Tabela 12.

	_	Dia. Mín. Cabo de força (mm2)			Interruptor Manual (A)		Protetor de
	Fornecimento			Cabo à			fuga
Modelo	de Energia	<20M	<50M	terra	Capac.	Fusível	
180 MBH	- 380-415V - - 3h~ 50/60Hz -	4X16	4X25	- 1x16mm²	80	70	
190 MBH		4X25	4X35	- IXIOIIIII-	80	70	100mA 0,1 -
290 MBH	- 311~ 5U/6UHZ -	4X35	4X50		100	80	seg ou menos

Observações:

- A seleção do cabo dos seguintes modelos deve ser independente, conforme sua classificação nominal: 180, 190, 290 MBH
- O diâmetro do cabeamento e o comprimento mostrada na tabela indicam que a condição de queda de tensão se encontra dentro de uma categoria de 2%. Se o comprimento exceder as quantidades indicadas acima, selecione o diâmetro do cabo de acordo com a classificação nominal aplicável.

Figura 28. Fonte de energia da unidade externa Fonte de energia Fonte de energia

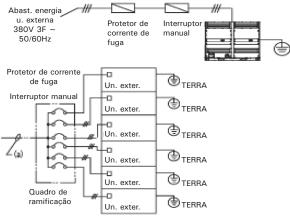


Figura 29. Fonte de alimentação 1 e 2 unidade externa

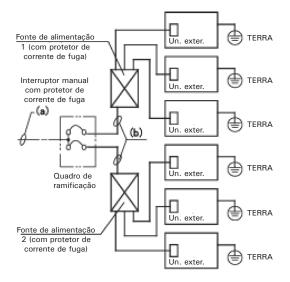
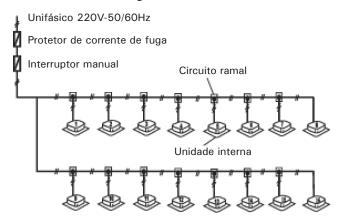



Tabela 13. Cabeamento de Força da Unidade Interna

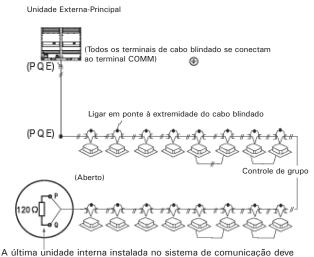
Modelo		Fornecimento de Energia	Dia. Mín. Cabo de	força (mm2)	Interruptor Manual (A)		Protetor de
			Comprimento do cabo <20m(<50m)	Cabo à terra	Capacidade	Fusível	corrente de fuga
Todos os modelos	Aquecedor não-auxiliar	Unifásico 220V 50/60Hz	2x2.5(4.0)mm²	1x15mm²	30	15	20A 30mA 0.1 seg. ou menos
	Aquecedor não-auxiliar	220V 50/60Hz					

Observação: O diâmetro do cabeamento e o comprimento mostrada na tabela indicam que a condição de queda de tensão se encontra dentro de uma categoria de 2%. Se o comprimento exceder as quantidades indicadas acima, selecione o diâmetro do cabo de acordo com a classificação nominal.

Figura 29. Fornecimento de energia Unidade Interna

⚠ PRECAUÇÃO

- Coloque dentro de um só sistema a tubulação do refrigerante e o cabeamento de comunicação entre unidades internas e entre unidades externas.
- Não coloque o cabeamento de comunicação no mesmo tubo de conduíte. Mantenha uma distância entre os tubos. (Capacidade de corrente de fornecimento de energia: menos que 10A—300mm, menor que 50A-500mm).
- Ajuste a direção da unidade externa no caso de múltiplas unidades internas na configuração paralela.


Sistema de controle

- O cabo de controle deve ser de aço blindado. O uso de qualquer outro tipo de cabeamento criará um sinal de interferência, proporcionando erros na operação do equipamento.
- As extremidades do laço de comunicação (unidade externa e a última unidade interna) devem ser aterradas.
- O cabeamento de controle não deve dirigir-se em conjunto com a tubulação refrigerante e cabeamento de força. Quando o cabeamento de força e cabeamento de controle se distribuem de maneira paralela, deve-se manter um espaço entre eles de no mínimo 300mm para evitar sinais de interferência.
- O cabeamento de controle não deve ter circuito fechado.
- O cabeamento de controle mostra a polaridade. Durante sua conexão, assegure-se de respeitar a polaridade do cabeamento de controle.

Observação: A blindagem deverá conectar-se com a terra no terminal do cabeamento da unidade externa. O cabeamento de entrada e saída do cabeamento de comunicação das unidades internas, não deve ser aterrado, deve ser conectado diretamente. As extremidades da unidade interna final deverá conservar o circuito aberta.

Cabo de Comunicação entre as Unidades Interna/Externa

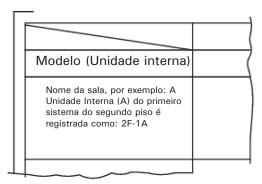
O cabo de comunicação deve ser de 3 condutores de multi-filamento, em malha, retorcido, com secão de 1 mm².

fazer uma ponte de conexão entre as portas P e Q, por meio de uma resistência de 120 ohms.

Potência 380-415V-, 50/60Hz) L1 L2 L3 N Unidade externa (unidade principal) сомм Cabo de comunicação entre as unidades interna/externa Unidade interna Unidade interna Unidade interna Cabo serial entre as unidade Interna e o unidades internas controle com fio Controle com fio Controle com fig Controle com fio

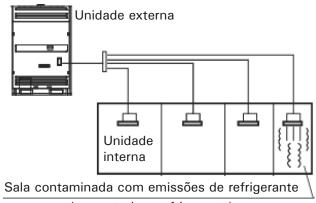
Figura 30. Exemplo de conexão de fiação de controle

Teste Operacional


- Antes de iniciar o teste, confirme que na linha de refrigerante e o cabo de comunicação com a unidade interna e externa tenham sido conectados ao mesmo sistema de refrigeração.
 Do contrário, poderá provocar problemas no funcionamento do equipamento.
- Antes de arrancar a unidade, verifique se considerou os seguintes pontos:
 - A tensão de força se encontra dentro de ± 10% da tensão nominal;
 - O cabo de força e o cabo de controle estão devidamente conectados;
 - Não há presença de curto-circuito em nenhuma linha.
- Observe que as unidades passaram pelos testes de pressão de 24 horas com nitrogênio: 40kg/cm².
- Verifique que o sistema foi evacuado e carregado com refrigerante.
- Assegure o cálculo da quantidade de refrigerante adicional para cada grupo de unidades, em conformidade com o comprimento real da tubulação de líquido. Verifique se há refrigerante adicional.
- Tenha em mãos os diagramas da tubulação e do cabeamento de controle.
- Registre o código de direção no plano do sistema.
- Verifique a energização das unidades externas durante 24 horas de antecipação para permitir o cabeamento de líquido refrigerante no compressor.
- Abra a válvula de fechamento da linha de gás, a válvula de fechamento da linha de líquido, a válvula niveladora de líquido refrigerante e a válvula niveladora de gás/líquido. Não abrir estas válvulas causa danos ao sistema.
- Verifique se a sequência de fase do fornecimento elétrico da unidade externa está adequada.
- Verifique que todos os ajustes das unidades internas e externas tenham sido colocados em conformidade com os requisitos técnicos do produto.

Identificação de Sistemas Conectados

Para identificar claramente os sistemas conectados entre duas ou mais unidades internas e externas, designe nomes para cada sistema e os registre em uma etiqueta colada na tampa da caixa de conexões elétricas.


Figura 31.

Vazamentos de refrigerante

O ar condicionado utiliza refrigerante R-410A. A sala deve ter as dimensões apropriadas para evitar que alguma fuga alcance um nível perigoso de emissão. O nível crítico de emissão de refrigerante por espaço ocupado para R-410A é de: 0,24 [kg/m3] em conformidade com a norma ASHRAE15.

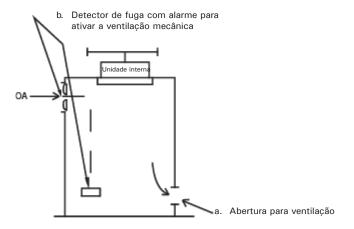
Figura 32.

(vazou todo o refrigerante)

- Calcule o nível crítico de emissões seguindo os passos abaixo:
- Calcule o peso total do refrigerante (A[kg])
- Peso total do refrigerante (A) = Peso de origem (carga da placa da unidade) + Peso do refrigerante adicional.
- Calcule o volume crítico inferior B (m3) da zona mais comprometida (menor volume).
- Calcule o nível crítico da emissão de refrigerante.

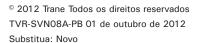
A[kg]

 \leq Nível crítico: 0,24 [kg/m 3]


B [m³]

Teste operacional

- Ação Corretiva contra Emissões de Refrigerante
- Instalar o mecanismo de ventilação periódica para reduzir os níveis críticos de refrigerante.
- Instale o detector de fugas com dispositivo de alarme para ativar o mecanismo de ventilação quando não existir ventilação periódica do espaço.


Figura 33.



A Trane otimiza o desempenho de residências e edifícios no mundo inteiro. A Trane, uma empresa de propriedade da Ingersoll Rand, é líder em criação e conservação de ambientes seguros, confortáveis e enérgico-eficientes, oferecendo uma vasta gama de produtos avançados de controles e sistemas HVAC, serviços integrais para edifícios e peças de reposição. Para maiores informações, visite-nos em www.Trane.com.

A Trane mantém uma política de aperfeiçoamento constante de seus produtos e dados de produtos, reservando-se ao direito de realizar alterações em seus desenhos e especificações sem aviso prévio.

