

# Manual de Instalação e Operação

# Sistemas TVR™

TVR<sup>™</sup> Mini Plus DC Inverter — R410A Unidade Externa Bomba de Calor 76.000 Btu/h – 89.000 Btu/h 380 V/50 HZ/3 F 86.000 Btu/h – 96.000 Btu/h 220 V/60 HZ/3 F



4TVH0086B6000AB 4TVH0096B6000AB 4TVH0076BD000AA 4TVH0089BD000AA

## A ADVERTÊNCIA DE SEGURANÇA

Somente pessoal qualificado deverá prestar serviços de instalação e manutenção para o equipamento. As tarefas de instalação, inicialização e manutenção dos equipamentos de aquecimento, ventilação e ar-condicionado podem ser altamente perigosas e, portanto, exigem conhecimentos e treinamentos específicos para sua execução. Equipamentos mal instalados, ajustados ou modificados por pessoas não treinadas pode resultar em morte ou lesões graves. Ao trabalhar com o equipamento, observe todas as instruções de segurança contidas na literatura e nos rótulos, bem como nas demais sinalizações de identificação afixadas no equipamento.

JSVNE



©2020 Trane TVR-SVX016A-EM



## Conteúdo

| Precauções                                                                    |
|-------------------------------------------------------------------------------|
| Acessórios incluídos                                                          |
| Instalação da unidade externa                                                 |
| Local de instalação                                                           |
| Espaço da instalação (unidade: mm)9                                           |
| Deslocamento e instalação10                                                   |
| Drenagem central do chassi                                                    |
| Tubulação de fluido refrigerante                                              |
| Detecção de vazamentos13                                                      |
| Isolamento térmico                                                            |
| Método de conexão13                                                           |
| Confirmação dos diâmetros dos tubos conectores da unidade interna             |
| Confirmação dos diâmetros dos tubos conectores da unidade externa15           |
| llustração                                                                    |
| Remoção de terra ou água da tubulação20                                       |
| Teste de estanqueidade do ar20                                                |
| Purga de ar com bomba de vácuo20                                              |
| Quantidade de fluido refrigerante a ser adicionada20<br>Cabeamento elétrico21 |
| Cabeamento da unidade externa24                                               |
| Cabeamento da unidade interna                                                 |
| Teste operacional                                                             |
| Precauções para vazamentos de fluido refrigerante                             |
| Informações importantes sobre o fluido refrigerante usado28                   |
| Entrega ao cliente                                                            |



## **Precauções**

- Certifique-se de cumprir todas as regulamentações locais, nacionais e internacionais.
- Antes da instalação, leia as "PRECAUÇÕES" com atenção. As precauções abaixo incluem instruções de segurança importantes, que devem ser observadas atentamente.
- Após a conclusão da instalação, execute um teste operacional para verificar se há algum problema.
- Leia o Manual de Operação para explicar o uso e a manutenção da unidade ao cliente.
- Desligue o interruptor do fornecimento de energia antes de realizar manutenções na unidade.
- Instrua o cliente de que o Manual de Instalação e o Manual de Operação devem ser mantidos juntos e com fácil acesso.

#### **A PRECAUÇÃO**

Instalação do ar-condicionado com novo fluido refrigerante ESTE AR-CONDICIONADO UTILIZA O NOVO FLUIDO REFRIGERANTE HFC (R410A) QUE NÃO É PREJUDICIAL À CAMADA DE OZÔNIO.

As características do fluido refrigerante R410A são: membranas ou óleo oxidante hidrofílico, com pressão aproximadamente 1,6 vezes maior que a do fluido refrigerante R22. Assim com o fluido refrigerante, o óleo refrigerante também mudou. Por isso, durante a instalação, certifique-se de que água, poeira, fluido refrigerante ou óleo refrigerante antigos não entrem no ciclo de refrigeração.

Para evitar a inserção de óleo ou fluido refrigerante incorretos, os tamanhos das seções conectoras da porta de carregamento da unidade principal e as ferramentas de instalação são diferentes daquelas do fluido refrigerante convencional.

Da mesma forma, ferramentas exclusivas são necessárias para o novo fluido refrigerante (R410A):

Nos tubos de conexão, use a tubulação nova e limpa criada para o R410A e previna contra a entrada de água ou poeira. Não use a tubulação existente porque ela apresenta problemas de resistência à pressão e contém impurezas.

## A PRECAUÇÃO

Não conecte o aparelho na fonte de alimentação principal.

Esta unidade deve ser conectada à fonte de alimentação principal por um interruptor com uma distância de contato de pelo menos 3 mm. O fusível de instalação deve ser usado na linha de alimentação do ar-condicionado.

#### A ADVERTÊNCIA

 Solicite a um revendedor autorizado ou instalador profissional a instalação ou manutenção do ar-condicionado.

A instalação incorreta pode provocar vazamento de água, choque elétrico ou incêndio.

 Desligue o interruptor/disjuntor da fonte de alimentação principal antes de realizar qualquer trabalho elétrico.

Certifique-se de que todos os interruptores de energia estejam desligados. Caso contrário, poderá ocorrer choque elétrico.

• Conecte o cabo de conexão corretamente.

Caso ele seja conectado incorretamente, as peças elétricas poderão ser danificadas.

 Ao mover a unidade para outro local para instalação, evite a entrada de qualquer matéria gasosa na unidade além do fluido refrigerante especificado para o ciclo de refrigeração.



Em caso de mistura de fluido refrigerante com qualquer outro gás, a pressão do gás no ciclo de refrigeração torna-se anormalmente alta e pode causar a explosão do tubo, bem como ferimentos pessoais.

- Não modifique esta unidade removendo qualquer proteção de segurança ou ignorando qualquer um dos interruptores de bloqueio de segurança.
- Expor a unidade à água ou umidade antes da instalação pode provocar curto-circuito nas peças elétricas.

Não armazene a unidade em um porão úmido ou a exponha à chuva ou água.

- Após desembalar a unidade, inspecione-a quanto a possíveis danos.
- Para evitar ferimentos (por pontas afiadas), tenha cuidado ao manusear as peças.
- Instale a unidade de acordo com o Manual de Instalação.

A instalação incorreta pode causar vazamento de água, choque elétrico ou incêndio.

- Se a unidade for instalada em um cômodo pequeno, observe as medidas adequadas para garantir que a concentração de vazamentos de fluido refrigerante que podem ocorrer no local não exceda o nível crítico.
- Instale o ar-condicionado em um local em que a base seja capaz de suportar adequadamente seu peso.
- Realize trabalhos de instalação específicos que protejam a unidade contra terremotos.
   Se a unidade não for instalada corretamente, isso poderá causar acidentes devido ao colapso da unidade.
- Caso haja vazamento de gás refrigerante durante o trabalho de instalação, ventile o ambiente imediatamente.

O gás refrigerante em contato com o fogo produz gases tóxicos.

- Depois de concluir a instalação, verifique se não há vazamento de gás refrigerante. Caso haja vazamento de gás refrigerante dentro do cômodo e fique sob a ação de uma fonte de chamas como, por exemplo, um fogão, poderá produzir gases tóxicos.
- Os trabalhos elétricos devem ser executados por eletricistas qualificados e de acordo com o Manual de Instalação.
- Certifique-se de que o ar-condicionado utilize um fornecimento de energia exclusivo.
   Capacidade de energia insuficiente ou instalação incorreta pode causar incêndio.
- Use os cabos especificados para o cabeamento da conexão até os terminais a fim de evitar a aplicação de energias externas aos terminais que podem ser afetados.
- Certifique-se de fornecer aterramento.

Não use tubos de gás, tubos de água, para-raios ou fios de telefone como conexão à terra.

 Cumpra os regulamentos da empresa de fornecimento de energia local para cabeamento de fornecimento de energia.

O aterramento inadequado pode causar choque elétrico.

Não instale o ar-condicionado em um local sujeito ao risco de exposição a gás combustível.
 Vazamentos de gás perto da unidade podem causar incêndio.



#### **Precauções**

#### Ferramentas necessárias para instalação

- 1. Chave de fenda Philips
- 2. Broca oca (65 mm)
- 3. Chave inglesa
- 4. Cortador de tubos
- 5. Faca
- 6. Alargador
- 7. Detector de vazamento de gás
- 8. Fita métrica
- 9. Termômetro
- 10. Megômetro
- 11. Testador de circuito elétrico
- 12. Chave sextavada
- 13. Flangeador
- 14. Dobrador de tubos
- 15. Nivelador
- 16. Serra de metal
- 17. Coletor de manômetro (mangueira de descarga: requisito especial R410A)
- 18. Bomba de vácuo (mangueira de descarga: requisito especial R410A)
- 19. Torquímetro

1/4 (17 mm) 16 N°m (1,6 kgf°m) 3/8 (22 mm) 42 N°m (4,2 kgf°m) 1/2 (26 mm) 55 N°m (5,5 kgf°m) 5/8 (15,9 mm)120 N°m (12,0 kgf°m)

- 20. Ajustador da margem de projeção do tubo de cobre
- 21. Adaptador da bomba de vácuo



## Acessórios incluídos

Verifique se os seguintes acessórios estão completos. Se houver acessórios incompletos, repare-os adequadamente.

|                             | NOME                                                          | DESIGN      | QUANTIDADE |
|-----------------------------|---------------------------------------------------------------|-------------|------------|
|                             | 1. Manual de Instalação<br>da Unidade Externa                 |             | 1          |
|                             | 2. Manual de Operação<br>da Unidade Externa                   |             | 1          |
|                             | 3. Manual de Operação<br>da Unidade Interna                   |             | 1          |
| ACESSÓRIOS<br>DE INSTALAÇÃO | 4. Instruções de<br>Instalação Múltipla de<br>Unidade Interna |             | 1          |
|                             | 5.Tubo conector da<br>saída de água                           |             | 1          |
|                             | 6. Anel de vedação                                            | 0           | 1          |
|                             | 7. Tampa do chassi/<br>da estanqueidade                       | <b>GEED</b> | 2          |
|                             | 8.Tubo de conexão                                             |             | 1          |
|                             | 9.Tubo de conexão<br>em curva                                 |             | 1          |

#### Tubulação de fluido refrigerante

O conjunto de tubulação usado no fluido refrigerante convencional não deve ser usado.

Use tubo de cobre com espessura de 0,8 mm ou maior para  $\varphi$ 9,5.

Use tubo de cobre com espessura de 1,0 mm ou maior para φ15,9.

Use tubo de cobre com espessura de 1,0 mm ou maior para  $\phi$ 19,0.

A porca flange e seu manuseio diferem daqueles do fluido refrigerante convencional. Remova e utilize a porca flange instalada no ar-condicionado principal.

#### Antes da instalação

Leia com atenção os pontos a seguir antes da instalação.

#### Purga de ar

Para purgar o ar, use uma bomba de vácuo. Não use o fluido refrigerante colocado na unidade externa para purgar o ar. (O fluido refrigerante para purga de ar não está contido na unidade externa.)

#### Cabeamento elétrico

Certifique-se de usar presilhas/abraçadeiras para fixar os cabos de força e os cabos de conexão à unidade interna/externa para que não entrem em contato com a carcaça etc.

#### Local de instalação

Local que proporcione espaço especificado ao redor da unidade externa.

Local que não emita ruídos de operação e o ar de descarga não afete os vizinhos.



Local que não esteja exposto a ventos fortes. Local que não obstrua a passagem.

Se a unidade externa for instalada em uma posição elevada, certifique-se de que seus quatro suportes estejam devidamente fixados na base de instalação.

Deve haver espaço suficiente para transportar a unidade até sua base.

Local em que a água do escoamento não cause problemas.

#### A PRECAUCÃO

- Instale a unidade externa em um local que não bloqueie o ar de descarga.
- Se a unidade externa for instalada em um local sempre exposto a ventos fortes, como em uma costa ou em um andar alto de um edifício, assegure o funcionamento normal do ventilador com o uso de um duto ou proteção contra vento.
- Ao instalar a unidade externa em um local constantemente exposto a ventos fortes, como escadarias ou terraço de um edifício, aplique as medidas à prova de vento mencionadas nos exemplos a seguir.
- Instale a unidade de forma que sua porta de descarga fique voltada para a parede do edifício.
   Mantenha uma distância de 3000 mm ou mais entre a unidade e a superfície da parede.
- Não monte a unidade externa sobre a parede.

3000

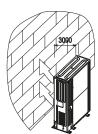



Figura 1.

• Suponhamos que a direção do vento durante a operação da porta de descarga seja definida para o ângulo direito da direção do vento.

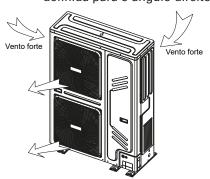



Figura 2.

- A instalação nos locais a seguir pode causar problemas. Não instale a unidade nos seguintes locais:
  - Locais cheios de óleo para máquina.
  - Locais cheios de gás sulfúrico.
  - Locais que podem gerar ondas de rádio de alta frequência, como caixas de som, ferros de soldar e equipamentos médicos.



## Instalação da unidade externa

## Local de instalação

Mantenha distância dos locais a seguir a fim de evitar o mau funcionamento da unidade.

- Locais apresentando vazamento de gás combustível.
- Locais onde há presença de muitos ingredientes oleosos (inclusive óleo de motor).
- Locais onde há presença de ar salino circundante (próximo à costa). Locais onde há presença de gás cáustico (por exemplo, sulfito) no ar (próximo a fontes termais).
- Locais onde o ar expelido da unidade externa pode atingir a janela do vizinho.
- Locais onde os ruídos podem incomodar o dia a dia dos vizinhos.
- Locais que não sejam capazes de suportar o peso da unidade.
- · Locais desnivelados.
- Locais com ventilação insuficiente.
- Próximo a uma central elétrica ou equipamento de alta frequência.
- Instale a unidade interna, a unidade externa, o cabo de força e o cabo de conexão a pelo menos 1 m de distância de televisores ou rádios para evitar ruído ou interferência na imagem.

O isolamento das partes metálicas do edifício e do ar-condicionado deve estar em conformidade com os Regulamentos Elétricos Nacionais.

### A PRECAUÇÃO

Mantenha a unidade interna, a unidade externa, o cabeamento do fornecimento de energia e o cabeamento da transmissão a pelo menos 1 metro de distância de televisores e rádios para evitar ruído e interferência na imagem destes aparelhos elétricos. (O ruído pode ser gerado dependendo das condições sob as quais ele é gerado, mesmo com distância de 1 metro.)

## Espaço da instalação (unidade: mm)

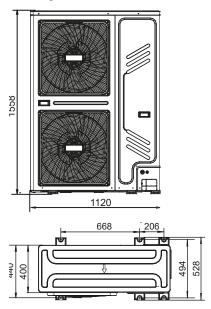



Figura 3.



Instalação de uma única unidade

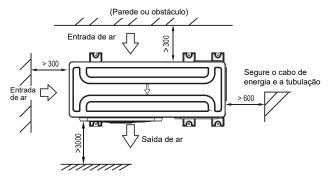



Figura 4.

• Conexão paralela de duas unidades ou mais

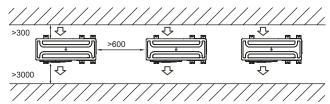



Figura 5.

Conexão paralela dos lados dianteiros com os lados traseiros

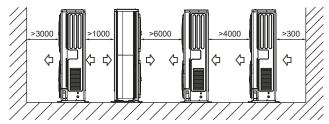



Figura 6.

## Deslocamento e instalação

- Considerando que o centro de gravidade da unidade não está em seu ponto central físico, tenha cuidado ao levantar a unidade para deslocamento.
- Jamais segure a tampa de entrada da unidade externa porque isso pode deformá-la.
- Não toque no ventilador com as mãos ou outros objetos.
- Não incline a unidade mais de 45°, ou vire-a de lado.
- Prepare a base de concreto de acordo com as especificações para unidades externas.
   (Ver Figura 7)
- Fixe os pés da unidade firmemente com parafusos para evitar desmoronamento em caso de terremoto ou ventos fortes. (Ver Figura 7).



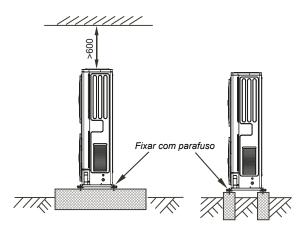



Figura 7.

**Nota**: Todas as imagens contidas neste manual são apenas amostras, que podem ser diferentes da imagem da unidade adquirida (dependendo do modelo). A forma real da unidade deve prevalecer.

## Drenagem central do chassi

Se a unidade externa exigir drenagem central, instale o chassi e duas tampas à prova d'água no chassi, conforme mostrado na Figura 8. Instale o tubo de conexão da saída de água e o anel de vedação no chassi e, em seguida, conecte o tubo de drenagem para concluir a instalação da drenagem central.

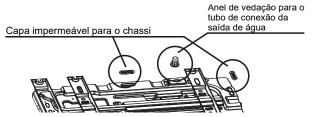



Figura 8.

## A PRECAUÇÃO

Ao instalar a unidade externa, preste atenção ao local de instalação e ao padrão de drenagem. Se ela for instalada em uma área muito fria, a água condensada congelada bloqueará a saída de água. Remova o tampão de borracha da saída de água de reserva. Se esta ação não ajudar a drenar a água, faça um furo cego nas outras duas saídas de água para drenar a água. O furo cego deve estar de dentro para fora e depois de aberto não pode ser reparado. Preste atenção ao local de instalação para evitar transtornos. Veja se há mariposas no furo cego a fim de evitar sua infestação e a destruição de componentes.



## Instalação do tubo de conexão

Verifique se a altura de queda entre as unidades interna e externa, o comprimento do tubo de fluido refrigerante e o número de curvas atendem aos seguintes requisitos:

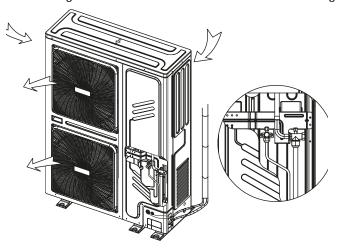
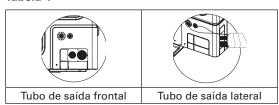



Figura 9.

## Tubulação de fluido refrigerante


#### A PRECAUÇÃO

Ao conectar os tubos, tenha muito cuidado para não danificar os componentes. Para evitar a oxidação da tubulação de fluido refrigerante dentro da unidade durante a soldagem, é necessário colocar nitrogênio, pois o óxido pode obstruir o sistema de circulação.

Interface do tubo de conexão interno e externo e saída da linha de alimentação

Há várias opções de padrões de tubulação e cabeamento, como saída frontal, saída lateral, saída traseira e saída subterrânea etc. As imagens mostram as várias opções de tubulação e interfaces de furos cegos para cabeamento.

Tabela 1



## A PRECAUÇÃO

- Tubo de saída lateral: corte o furo lateral da placa de saída do tubo. Recomendamos fazer um corte na placa de metal inferior para evitar a entrada de roedores que podem destruir o cabeamento da unidade.
- Tubo de saída frontal: corte o furo frontal da placa de saída do tubo. Recomendamos fazer um corte na placa de metal do lado direito para evitar a entrada de roedores que podem destruir cabeamento da unidade.
- Cabeamento do cabo de alimentação: o cabo elétrico de corrente forte e fraca deve ser cortado através dos dois furos de plástico na placa de saída do tubo e amarrados juntos no tubo de gás e líquido.



## Detecção de vazamentos

Use água com sabão ou um detector de vazamentos em todas as conexões para verificar se há vazamento. (Ver Figura 10).

Nota: A é a válvula de retenção do lado de baixa pressão B é a válvula de retenção do lado de alta pressão C e D é a interface de tubos de conexão das unidades interna e externa



Figura 10.

### Isolamento térmico

Aplique separadamente o isolamento térmico nos tubos do lado do ar e do lado do líquido. Os tubos nos lados de líquido e de ar relatam baixa temperatura durante o modo de resfriamento. Para evitar condensação, aplique completamente o isolamento térmico.

- O tubo no lado do gás deve ser tratado com material de isolamento de espuma de borracha com esponja de célula fechada que atinja o nível não inflamável B1 e resistência ao calor superior a 120 °C.
- Se o diâmetro externo do tubo de cobre não for maior que superior a um diâmetro ≤ Φ12,7 mm, a espessura da camada de isolamento deve ser maior que 15 mm.
- Se o diâmetro externo do tubo de cobre for igual ou maior que  $\Phi$  15,9 mm, a espessura da camada de isolamento deve ser maior que 20 mm.
- O material de isolamento aderido na parte da unidade interna na qual o tubo é conectado deve ser submetido a um tratamento de isolamento térmico que não contenha absolutamente nenhum espaço ou lacuna livre.



Figura 11.

## Método de conexão

Selecionar tubo de fluido refrigerante

Tabela 2

| Definição do tubo                   | Posição da conexão do tubo                                                    | código |
|-------------------------------------|-------------------------------------------------------------------------------|--------|
| Tubo principal                      | O tubo entre a unidade externa e o primeiro ramal da unidade interna.         | L1     |
| Tubos principais da unidade interna | O tubo depois do primeiro ramal não se conecta diretamente à unidade interna. | L2-L5  |



| Tubos ramais de unidade interna                 | O tubo depois do ramal se conecta à unidade interna.                                          | a, b, c, d, e, f |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------|
| Componentes dos tubos ramais de unidade interna | Os tubos se conectam ao tubo principal, ao tubo ramal e ao tubo principal da unidade interna. | A, B, C, D, E    |

Primeiro método de conexão



Figura 12.

Segundo método de conexão

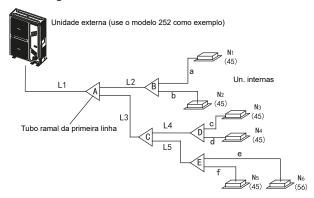



Figura 13.

#### Nota:

- A distância da primeira conexão ramal até a última unidade interna é maior que 15 m.
   Escolha o segundo método de conexão.
- O tubo entre a unidade interna e a conexão ramal mais próxima deve ser menor que 15 m.

## Confirmação dos diâmetros dos tubos conectores da unidade interna

- Tamanho do tubo principal, da conexão ramal correspondente e do coletor ramal.
- 1. R410A diâmetros dos tubos conectores da unidade interna Fig. 11.
- 2. Exemplo 1: Na Fig. 13, unidades internas a jusante do L2 e sua capacidade total é 45x2=90. Na Tabela 4, o lado do ar/líquido do L2 é: 015,9/09,5.

R410A Diâmetros dos tubos conectores da unidade interna



Tabela 3

| Capac. de un. internas | Tam. tubo pı | Coletor             |           |
|------------------------|--------------|---------------------|-----------|
| a jusante              | Tubo ar      | ar Tubo líquido apl |           |
| A<166                  | Ф15,9        | Ф9,5                | TRDK056HP |
| 166≤A<230              | Ф19,1        | Ф9,5                | TRDK056HP |
| 230≤A<330              | Ф22,2        | Ф9,5                | TRDK112HP |
| 330≤A                  | Ф28,6        | Ф12,7               | TRDK225HP |

## Confirmação dos diâmetros dos tubos conectores da unidade externa

R410A Diâmetros dos tubos conectores da unidade externa

Tabela 4

| Capacidade<br>total de<br>unidades | Tam. do tubo principal quando o comp. de equivalente total do lado do líq. e do gás é <90 m |                   | Tam. do tubo principal quando o co<br>equivalente total do lado do líq.<br>e do gás é ≥90 m |                  | ado do líq.       |                              |
|------------------------------------|---------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------|------------------|-------------------|------------------------------|
| externas                           | Lado gás<br>(mm)                                                                            | Lado Líq.<br>(mm) | Tubo ramal da primeira linha                                                                | Lado gás<br>(mm) | Lado Líq.<br>(mm) | Tubo ramal da primeira linha |
| A<160                              | Ф15,9                                                                                       | Ф9,5              | TRDK056HP                                                                                   | Ф19,1            | Ф9,5              | TRDK056HP                    |
| 160 ≤ A<230                        | Ф19,1                                                                                       | Ф9,5              | TRDK056HP                                                                                   | Ф22,2            | Ф9,5              | TRDK112HP                    |
| 230 ≤ A<330                        | Ф22,2                                                                                       | Ф9,5              | TRDK112HP                                                                                   | Ф25,4            | Ф9,5              | TRDK112HP                    |

#### Nota:

- A distância reta entre a curva do tubo de cobre e o tubo ramal adjacente é de pelo menos 0,5 m.
- A distância reta entre os tubos ramais adjacentes é de pelo menos 0,5 m.
- A distância reta na qual os tubos ramais se conectam à unidade interna é de pelo menos 0,5 m.
- O coletor ramal deve ser conectado diretamente às unidades internas. N\u00e3o \u00e9 permitida nenhuma conex\u00e3o ramal adicional.
- Seleção da conexão ramal
- Selecione a conexão ramal de acordo com a capacidade total designada das unidades internas às quais está conectada. Se esta capacidade for superior à da unidade externa, selecione a conexão de acordo com a unidade externa.
- A seleção do coletor ramal depende do número de ramais aos quais está conectado.

#### • Método de conexão

Tabela 5

|             | Lado gás           | Lado líquido       |
|-------------|--------------------|--------------------|
| 22,4/25,2kW | Soldar ou flangear | Soldar ou flangear |
| 26/28kW     | Soldar ou flangear | Soldar ou flangear |
| Un. interna | Flangear           | Flangear           |
| Tubo ramal  | Soldar ou flangear | Soldar ou flangear |



#### Tamanhos de tubulação no tubo ramal

Tabela 6 (A: capacidade total de unidades internas)

| Fluido<br>refrigerante | A (Tipo)                         | Lado gás (0)        | Lado líquido (0)   |
|------------------------|----------------------------------|---------------------|--------------------|
|                        | Suporte de parede 22–45          | 12,7 (porca flange) | 6,4 (porca flange) |
|                        | Suporte de parede 56             | 15,9 (porca flange) | 9,5 (porca flange) |
|                        | Saída de ar de 4 lados 28–45     | 12,7 (porca flange) | 6,4 (porca flange) |
|                        | Saída de ar de 4 lados 56–80     | 15,9 (porca flange) | 9,5 (porca flange) |
|                        | Saída de ar de 1 lado 18–45      | 12,7 (porca flange) | 6,4 (porca flange) |
|                        | Saída de ar de 1 lado 56         | 15,9 (porca flange) | 9,5 (porca flange) |
|                        | Baixa pressão estática 18–45     | 12,7 (porca flange) | 6,4 (porca flange) |
|                        | Baixa pressão estática 56        | 15,9 (porca flange) | 9,5 (porca flange) |
|                        | Tipo duto delgado 71             | 15,9 (porca flange) | 9,5 (porca flange) |
| R410A                  | Tipo duto A5 22-45               | 12,7 (porca flange) | 6,4 (porca flange) |
|                        | Tipo duto A5 56–140              | 15,9 (porca flange) | 9,5 (porca flange) |
|                        | Cassete 4 vias 15–45             | 12,7 (porca flange) | 6,4 (porca flange) |
|                        | Tipo console 22–45               | 12,7 (porca flange) | 6,4 (porca flange) |
|                        | Cassete 2 vias 22–45             | 12,7 (porca flange) | 6,4 (porca flange) |
|                        | Cassete 2 vias 56–71             | 15,9 (porca flange) | 9,5 (porca flange) |
|                        | Tipo piso ao teto 36–45          | 12,7 (porca flange) | 6,4 (porca flange) |
|                        | Tipo piso ao teto 56–160         | 15,9 (porca flange) | 9,5 (porca flange) |
|                        | Tipo piso exposto e oculto 22-45 | 12,7 (porca flange) | 6,4 (porca flange) |
|                        | Tipo piso exposto e oculto 56-80 | 15,9 (porca flange) | 9,5 (porca flange) |

#### Diâmetro do tubo conector na carcaça da unidade externa

Tabela 7

| Lado da conexão | Diâmetro do tubo do conector da unidade externa (mm) |      |
|-----------------|------------------------------------------------------|------|
| Modelo (kW)     | Lado gás Lado líquido                                |      |
| 22,4            | Ф19,1                                                | Ф9,5 |
| 25,2/26/28      | Ф22,2                                                | Ф9,5 |

#### Tabela 8

| Un. externa (kW) | Un. externa (kW) Capac. da uni. externa (potência) |    | Soma da capac. Unid.<br>internas (potência) |
|------------------|----------------------------------------------------|----|---------------------------------------------|
| 22,4/25,2        | 8                                                  | 11 | 50%–130%                                    |
| 26               | 9                                                  | 12 | 50%–130%                                    |
| 28               | 10                                                 | 12 | 50%–130%                                    |

Se a capacidade da unidade interna for maior que a soma de 100%, a unidade será mitigada.

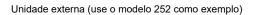
Para assegurar a eficiência da máquina, se a capacidade da unidade interna for maior ou igual à soma de 120%, tente abrir as unidades internas em momentos diferentes.



#### Nota:

- A capacidade total das unidades internas n\u00e3o deve exceder a 130% da carga da unidade externa.
- A sobrecarga reduz a capacidade correspondente.

Tabela 9


| Grau da capacidade | Capacidade<br>(potência) | Grau da<br>capacidade | Capacidade<br>(potência) |
|--------------------|--------------------------|-----------------------|--------------------------|
| 18                 | 0,6                      | 80                    | 2,8                      |
| 22                 | 0,8                      | 90                    | 3,2                      |
| 28                 | 1                        | 100                   | 3,5                      |
| 36                 | 1,3                      | 112                   | 4                        |
| 45                 | 1,6                      | 120                   | 4,3                      |
| 56                 | 2                        | 125                   | 4,5                      |
| 71                 | 2,5                      | 140                   | 5                        |

• Quando a unidade externa conecta uma unidade interna

Tabela 10

| MODELO    | Máx. altura o         | de queda (m)         | Comp. tubo de fluido | Número      |
|-----------|-----------------------|----------------------|----------------------|-------------|
| (kW)      | Unidade a<br>montante | Unidade a<br>jusante | refrigerante (m)     | de curvas   |
| 22,4/25,2 | 25                    | 20                   | 50                   | manaa da 10 |
| 26/28     | 25                    | 20                   | 50                   | menos de 10 |

## llustração



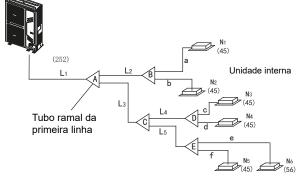



Figura 14.

Precaução: suponhamos que no sistema de tubulação implantado, o comprimento equivalente total da tubulação do lado do ar + lado do líquido seja superior a 90 m.

- Tubulação ramal unidade interna
- A tubulação ramal interna é designada de a–f. Para selecionar o tamanho, consulte a Tabela 6. Nota: o comprimento máximo do tubo ramal não deve exceder 15 m.
- Tubulação principal da unidade interna e componentes do tubo ramal da unidade interna =



- As unidades internas a jusante do tubo principal L2 são N1, N2 e sua capacidade total é 45x2=90. O tamanho do tubo L2 é Φ15,9/Φ9,5 e o tubo ramal B deve serTRDK056HP.
- As unidades internas a jusante do tubo principal L4 são N3, N4 e sua capacidade total é 45x2=90. O tamanho do tubo L4 é Φ15,9/Φ9,5 e o tubo ramal D deve serTRDK056HP.
- As unidades internas a jusante do tubo principal L5 são N5, N6 e sua capacidade total é 45+56=101. O tamanho do tubo L5 é Φ15,9/Φ9,5 e o tubo ramal E deve serTRDK056HP.
- As unidades internas sob o tubo principal L3 são N3–N6 e sua capacidade total é
   45×3+56=191. O tamanho do tubo L3 é Φ19,1/Φ9,5 e o tubo ramal C deve serTRDK056HP.
- As unidades internas sob o tubo principal A são N1-N6 e sua capacidade total é
  45x5+56=281, e o tubo ramal deve serTRDK112HP. Como o comprimento total da
  tubulação de líquido e de ar é ≥90 m, consulte a Tabela 4, e o primeiro tubo ramal que
  você precisa aplicar é o TRDK112HP e, de acordo com o princípio do valor máximo,
  deve aplicar o TRDK112HP.
- Tubo principal (consulte a Figura 14 e a Tabela 4)
   Na Fig. 14 do tubo principal L1, a capacidade da unidade externa é de 25,2 kW.
   Consulte a Fig. 14 para obter o tamanho do tubo de gás e de líquido que é Φ22,2/Φ9,5, bem como o comprimento equivalente dos tubos do lado do líquido e do gás que é >90 m. Consulte a Tabela 4 para obter o tamanho do tubo de gás/líquido que é Φ25,4/Φ9,5 e, de acordo com o princípio do valor máximo, deve aplicar Φ25,4/Φ9,5.
- Comprimento permitido e diferença de altura do tubo de fluido refrigerante

Tabela 11

|              |                                                                                                |                   | Valor permitido | Tubulação                                                                               |  |
|--------------|------------------------------------------------------------------------------------------------|-------------------|-----------------|-----------------------------------------------------------------------------------------|--|
|              | Comp. Total tubo (real)                                                                        |                   | ≤120 m          | L1+L2+L3+L4+L5+a+b+c+d+e+f                                                              |  |
| to tubulação | Tubulação<br>máxima (L)                                                                        | Comp. real        | ≤60 m           | L1+L2+L3+L4+L5+f (primeiro<br>método de conexão)                                        |  |
|              |                                                                                                | Comp. equivalente | ≤70 m           | ou L1+L3+L5+f (segundo método<br>de conexão)                                            |  |
| Comprimento  | Comp. tubo [desde o primeiro tubo ramal da primeira linha até a un. interna mais distante (m)] |                   | ≤20 m           | L2+L3+L4+L5+f (primeiro método<br>de conexão) ou L3+L5+f (segundo<br>método de conexão) |  |
| S            | Comp. tubo [desde o comprimento equivalente do tubo ramal mais próximo (m)]                    |                   | ≤15 m           | a, b, c, d, e, f                                                                        |  |
| neda         | Altura de queda da<br>unidade interna —                                                        |                   | ≤30 m           |                                                                                         |  |
| de qu        | unidade interna –<br>unidade externa (H                                                        |                   | ≤20 m           |                                                                                         |  |
| Altura       | Altura de queda da un. Interna para<br>Un. Interna (H)                                         |                   | ≤8 m            |                                                                                         |  |

Nota: Se o equivalente total da tubulação de gás e líquido for >90 m, aumente o tamanho do tubo principal do lado do ar. Além disso, de acordo com a distância do tubo de fluido refrigerante e o estado de desacoplamento da unidade interna, quando a capacidade estiver reduzindo, o tamanho do tubo principal do lado do gás ainda poderá ser aumentado.



Primeiro método de conexão

Unidade externa

Comprimento do tubo (do comprimento equivalente do tubo ramal)

a

Comprimento máximo equivalente do tubo

(Do tubo ramal da primeira linha) Comprimento máximo equivalente do tubo

En para e para

Unidade interna

#### Figura 15.

Segundo método de conexão

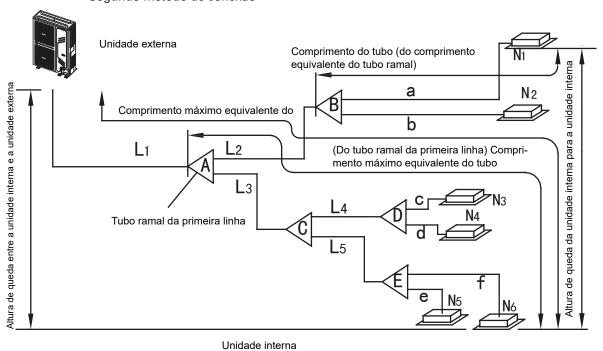



Figura 16.



## Remoção de terra ou água da tubulação

Antes de conectar a tubulação das unidades externas, assegure-se de eliminar a terra ou água. Lave a tubulação com nitrogênio de alta pressão. Nunca use fluido refrigerante na unidade externa.

## Teste de estanqueidade do ar

Para fazer o teste de estanqueidade, carregue nitrogênio pressurizado após conectar a unidade interna/externa.

#### A PRECAUÇÃO

- 1. Para o teste de estanqueidade, use nitrogênio pressurizado 4,3 MPa (44 kg/cm²) para R410A.
- 2. Aperte bem as válvulas de alta/baixa pressão antes de aplicar nitrogênio pressurizado.
- 3. Aplique pressão desde a entrada da purga de ar nas válvulas de alta e baixa pressão.
- 4. As válvulas de alta/baixa pressão são fechadas ao aplicar nitrogênio pressurizado.
- 5. Nunca use oxigênio, gás combustível ou gás tóxico no teste de estanqueidade.

## Purga de ar com bomba de vácuo

- Para purgar o ar, use uma bomba de vácuo. Jamais use fluido refrigerante para expelir o ar.
- A purga de ar deve ser feita simultaneamente nos lados do gás e do líquido.

## Quantidade de fluido refrigerante a ser adicionada

Calcule a quantidade de fluido refrigerante R410A a ser adicionada com base no diâmetro e comprimento dos tubos de líquido das unidades internas/externas.

• Quando a unidade externa conecta uma unidade interna:

Tabela 12

| Diâm. da tubulação<br>do lado do líquido | fluido refrigerante a ser adicionado por metro de tubulação |
|------------------------------------------|-------------------------------------------------------------|
| Ф6,4                                     | 0,022 kg                                                    |
| Ф9.5                                     | 0,057 kg (>22,4 kW)                                         |
| Ψ9,5                                     | 0,054 kg (<22,4 kW)                                         |
| Ф12,7                                    | 0,110 kg                                                    |
| Ф15,9                                    | 0,170 kg                                                    |
| Ф19,1                                    | 0,260 kg                                                    |
| Ф22,2                                    | 0,360 kg                                                    |

**Nota**: O volume adicional de fluido refrigerante do tubo divergente é de 0,1 kg por elemento (considere apenas o lado de líquido do tubo divergente).

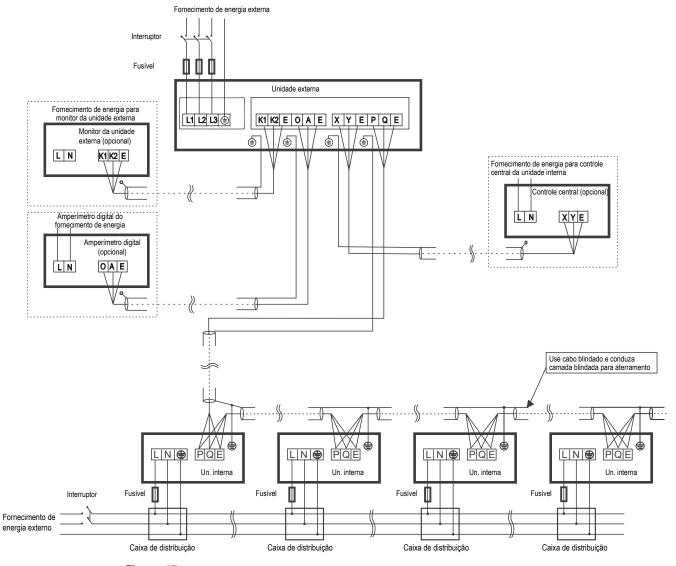


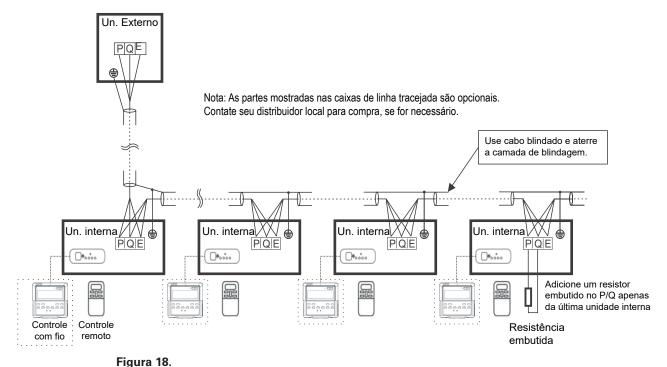
## Cabeamento elétrico

## **▲** PRECAUÇÃO

- Projete uma fonte de alimentação individual para a unidade interna e para a unidade externa.
- Se a fonte de alimentação usar um circuito ramal, instale um protetor de vazamento elétrico e um interruptor manual.
- O fornecimento de energia, os protetores elétricos contra vazamentos e os interruptores manuais das unidades internas que estão conectadas à mesma unidade externa devem ser do tipo universal. Use o mesmo circuito de conexão de energia da unidade interna para a mesma unidade externa, que deve ser do tipo universal. Use o mesmo circuito de fornecimento de energia da unidade interna dentro do mesmo sistema. Aplique o comando ON/OFF ao mesmo tempo.
- Incorpore o sistema de cabeamento de conexão da unidade externa e da unidade interna, além do sistema de cabeamento da tubulação de fluido refrigerante no mesmo sistema.
- Para reduzir a interferência, use um cabo de par trançado blindado de três condutores como o cabo de sinal da unidade externa. Não utilize cabos de múltiplos condutores.
- Faça o cabeamento de acordo com os regulamentos elétricos nacionais.
- O cabeamento deve ser feito por um engenheiro elétrico qualificado.

#### Cabeamento elétrico





Figura 17.

Conexão do sistema de controle elétrico trifásico da unidade externa

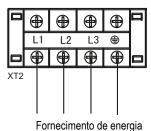
### A PRECAUÇÃO

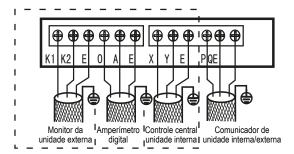
- Configurações de conexão incorretas podem danificar o compressor ou outros componentes.
- PQE é um cabo de sinal que deve ser conectado a uma corrente de baixa intensidade.
   Não o conecte a uma corrente de alta intensidade. Todos os terminais do cabeamento devem ser fixados com segurança. Aterre o fio terra conforme necessário.
- Após conectar o cabo de alimentação à base de conexão, esse cabo deve ser ajustado com segurança.
- Depois de conectar todos os cabos, verifique se todos os componentes estão corretos antes de ligar a energia.





Cabeamento do controle da unidade interna e controle da unidade externa


#### A PRECAUÇÃO


- Se o cabo de alimentação estiver paralelo ao cabo de sinal, insira os cabos elétricos em seus respectivos conduítes e mantenha uma distância adequada entre o cabeamento. (A distância entre os cabos de alimentação: menos de 10A–300 mm; menos de 50A–500 mm)
- Use um cabo blindado de três condutores como o cabo de sinal da unidade interna/ unidade externa e prossiga para aterrar a camada de blindagem conforme necessário.
- A tela, o controle remoto e o resistor embutido s\u00e3o acess\u00f3rios da unidade interna.
   O controle remoto com fio \u00e9 opcional. Para adquirir um controle remoto com fio, consulte seu revendedor local.



### Cabeamento da unidade externa

Função dos terminais cabeados da unidade externa





**Nota**: Use um cabo blindado de três vias e aterre a camada blindada (shielded layer) **Figura 19**.

Especificação de energia

Tabela 13

| fonte de alimentação |                 | 220 V 3 Ph – 60 Hz |         | 380V 3 Ph – 50 Hz |         |
|----------------------|-----------------|--------------------|---------|-------------------|---------|
| Modelo               | Capacidade (kW) | 25,2               | 28      | 25,2              | 25,2    |
|                      | Hz              | 60                 | 60      | 50                | 50      |
|                      | Voltagem        | 220                | 220     | 380               | 380     |
|                      | Mín. (V)        | 198                | 198     | 342               | 342     |
| Fornec.<br>Energia   | Máx. (V)        | 242                | 242     | 456               | 456     |
| Liicigiu             | MCA             | 35                 | 35      | 25                | 26,25   |
|                      | TOCA            | 37,8               | 37,8    | 23                | 23      |
|                      | MFA             | 40                 | 40      | 25                | 32      |
|                      | MSC             | /                  | /       | /                 | /       |
| Compressor           | RLA             | 28                 | 28      | 15,4              | 15,4    |
| OEM                  | KW              | 2×0,17             | 2×0,17  | 2×0,17            | 2×0,17  |
| OFM                  | FLA             | 2,1+1,7            | 2,1+1,7 | 2,1+1,7           | 2,1+1,7 |

#### A PRECAUÇÃO

- O equipamento deve estar em conformidade com a especificação IEC 61000-3-12.
   Um dispositivo de desconexão deve ser incorporado no cabeamento fixo, e esse deve ter uma distância de contato em conformidade com as regulamentações nacionais de cabeamento.
- A função reservada é indicada na tabela de linha tracejada. O usuário pode selecioná-la quando necessário.



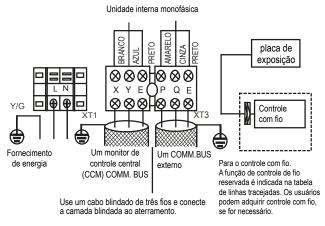
Cabo de sinal da unidade interna/externa

Conecte o cabo de acordo com sua numeração.

A conexão errada pode causar mau funcionamento.

#### Cabeamento de conexão

Vede a conexão do cabeamento com material isolante para evitar a entrada de condensação.


**Nota:** Os ares-condicionados podem ser conectados ao Monitor de Controle Central (CCM). Antes da operação, faça o cabeamento corretamente e defina o endereço do sistema e o endereço da rede das unidades internas.

#### Cabeamento da unidade interna

Fornecimento de energia

Tabela 14

| Capacidade (kW)                                                                                |                                  | 1,8–16                                     |  |
|------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|--|
|                                                                                                | Especificações                   | 220-240 V – 50Hz                           |  |
| Potência                                                                                       |                                  | 208–230 V – 60Hz                           |  |
| un. interna                                                                                    | Tam. cabeamento de energia (mm²) | 3x2,5                                      |  |
| Disjuntor para circuito (A) Un. interna/Un. externa cabo de sinal (mm²) (sinal elétrico fraco) |                                  | 16                                         |  |
|                                                                                                |                                  | cabo blindado de três<br>condutores 3X0,75 |  |



#### Figura 20.

- A linha de sinal é um cabo polarizado de três vias. Use cabo blindado de três condutores para evitar interferência. O método de aterramento agora é para aterrar a extremidade fechada do cabo blindado e abrir (isolamento) a outra extremidade. A blindagem deve ser aterrada.
- 2. O controle entre a unidade externa e a unidade interna é do tipo BUS. Os endereços são definidos durante a instalação.

#### A PRECAUÇÃO

O cabo de sinal da unidade interna/externa é um circuito de baixa tensão. Não toque no cabo de alta tensão. Coloque-o junto com o cabo de alimentação no mesmo tubo de distribuição do cabeamento.



**Nota**: O diâmetro do cabo e o comprimento contínuo dependem da vibração da tensão sendo mantida dentro de 2%. Se o comprimento contínuo exceder o valor exibido, escolha o diâmetro do cabo que corresponda à regulamentação relevante.

#### Cabeamento do fornecimento de energia da unidade interna

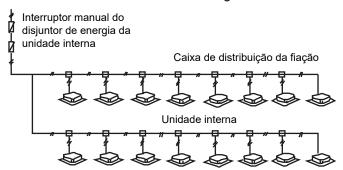



Figura 21.

#### A PRECAUÇÃO

- O sistema de tubulação de fluido refrigerante, os cabos de conexão de sinal da unidade interna-unidade interna e os cabos de conexão de sinal da unidade interna-unidade externa estão todos dentro do mesmo sistema.
- Se o cabo de alimentação estiver paralelo ao cabo de sinal, coloque-o dentro de conduítes de distribuição separados e mantenha uma distância adequada. (Distância de referência: 300 mm se a capacidade de corrente do cabo de alimentação for inferior a 10A ou 500 mm caso seja de 50A).
  - Use cabo blindado como cabo de sinal da unidade interna/externa.

#### Cabeamento de sinal da unidade interna/externa

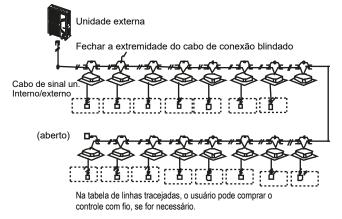



Figura 22.



## **Teste operacional**

Realize a operação de acordo com a "lista de testes operacionai" na tampa da caixa de controle elétrico.

### A PRECAUÇÃO

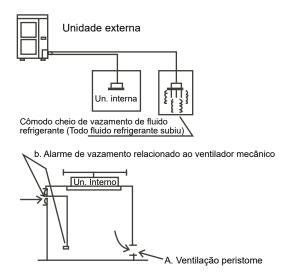
- Não é possível iniciar a operação de teste sem que a unidade externa tenha sido alimentada por 12 horas.
- Não é possível iniciar a operação de teste até que todas as válvulas estejam abertas.
- Nunca force uma operação. (O protetor não será ativado e podem ocorrer danos.)



## Precauções para vazamentos de fluido refrigerante

Este ar-condicionado (A/C) utiliza fluido refrigerante inofensivo e não inflamável. O cômodo de instalação da unidade de ar-condicionado deve ser grande o suficiente para impedir que qualquer vazamento de fluido refrigerante atinja o estado crítico de densidade. Por isso, algumas ações essenciais devem ser tomadas a tempo.

- Densidade crítica densidade máxima de Freon sem causar danos às pessoas.
- Densidade crítica do fluido refrigerante: 0,44[kg/m]<sup>3</sup> para R410A.


Confirme a densidade crítica conforme as etapas a seguir e execute as ações necessárias.

- 1. Calcule a soma do volume de carga A (kg) Volume Total de fluido refrigerante de 10 HP = volume de fluido refrigerante da fábrica + carga adicional.
- 2. Calcule a capacidade cúbica interna (B(m)3 como o cálculo ou a capacidade cúbica mínima.
- 3. Calcule a densidade do fluido refrigerante.

$$\frac{A [kg]}{B [m^3]} \le \text{ espessura crítica}$$

Tome medidas corretivas contra o excesso de densidade.

- 1. Instale um ventilador mecânico para reduzir a densidade do fluido refrigerante abaixo do nível crítico. (Ventile regularmente).
- Instale um alarme de vazamento vinculado ao ventilador mecânico se não for possível ventilar regularmente.



(O alarme de vazamento deve ser instalado em locais que contenham fluido refrigerante)

Figura 23.

**Nota**: pressione o botão "constraint cool" para iniciar o processo de reciclagem do fluido refrigerante. Mantenha a baixa pressão acima de 0,2 MPa para evitar queimar o compressor.

## Informações importantes sobre o fluido refrigerante usado

Este produto contém gás fluorado, cuja liberação para a atmosfera é proibida. Tipo de fluido refrigerante: R410A; Volume de GWP: 2088; GWP=Global Warming Potential (Potencial de Aquecimento Global)



#### Precauções para vazamentos de fluido refrigerante

|         | Carga de fábrica          |                                       |  |
|---------|---------------------------|---------------------------------------|--|
| Modelo  | fluido<br>refrigerante/kg | Toneladas CO <sub>2</sub> equivalente |  |
| 25,2 kW | 6,20                      | 12,95                                 |  |
| 28 kW   | 6,20                      | 12,95                                 |  |

Atenção: Frequência de detecção de vazamento de fluido refrigerante

- Para equipamentos que contêm gases fluorados causadores de efeito estufa em quantidades equivalentes ou maiores do que 5 toneladas de CO<sub>2</sub>, porém com menos de 50 toneladas de CO<sub>2</sub> = pelo menos a cada 12 meses, ou caso haja um sistema de detecção de vazamento instalado, pelo menos a cada 24 meses.
- 2. Para equipamentos que contêm gases fluorados causadores de efeito estufa em quantidades equivalentes ou maiores do que 50 toneladas de CO<sub>2</sub>, porém com menos de 500 toneladas de CO<sub>2</sub> = pelo menos a cada 6 meses, ou caso haja um sistema de detecção de vazamento instalado, pelo menos a cada 12 meses.
- Para equipamentos que contêm gases fluorados causadores de efeito estufa em quantidades equivalentes ou maiores do que 500 toneladas de CO<sub>2</sub>, pelo menos a cada 3 meses, ou caso haja um sistema de detecção de vazamento instalado, pelo menos a cada 6 meses
- 4. O equipamento de vedação não hermético carregado com gases fluorados causadores de efeito estufa só será vendido ao usuário final que comprove que a instalação será realizada por pessoal certificado.
- Somente pessoal certificado está autorizado a realizar a instalação, operação e manutenção do equipamento.



# Entrega ao cliente

O cliente deve receber o Manual de Operação da Unidade Externa e o Manual de Operação da Unidade Interna. Explique detalhadamente o conteúdo desses manuais ao cliente.



| Trane — deTraneTechnologies (NYSE:TT), uma empresa climática inovadora global — cria ambientes internos confortáveis e com baixo consumo de energia para uso comercial e residencial. Para mais informações, acesse trane.com ou tranetechnologies.com. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A Trane tem uma política de melhoria contínua de produtos e dados de produtos e reserva-se o direito de alterar o design e as especificações sem aviso prévio. Estamos comprometidos em utilizar práticas de impressão ecologicamente corretas.         |
| TVP SVV016A EM OUT2020                                                                                                                                                                                                                                  |