ALL phases of this installation must comply with NATIONAL, STATE AND LOCAL CODES

IMPORTANT — This Document is customer property and is to remain with this unit. Please return to service information pack upon completion of work.

These instructions do not cover all variations in systems or provide for every possible contingency to be met in connection with the installation. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser’s purposes, the matter should be referred to your installing dealer or local distributor.

Note: The manufacturer recommends installing only approved matched indoor and outdoor systems. All of the manufacture’s split systems are AHRI rated only with TXV/EEV indoor systems. Some of the benefits of installing approved matched indoor and outdoor split systems are maximum efficiency, optimum performance and the best overall system reliability.

Table of Contents

Section 1. Safety .. 2
Section 2. Unit Location Considerations 3
Section 3. Unit Preparation .. 5
Section 4. Setting the Unit .. 5
Section 5. Refrigerant Line Considerations 6
Section 6. Refrigerant Line Routing 8
Section 7. Refrigerant Line Brazing 8
Section 8. Refrigerant Line Leak Check 10
Section 9. Evacuation ... 12
Section 10. Service Valves ... 12
Section 11. Electrical - Low Voltage 13
Section 12. Electrical - High Voltage 15
Section 13. Start Up .. 16
Section 14. System Charge Adjustment 17
Section 15. Checkout Procedures and Troubleshooting ... 23
Section 16. Refrigerant Circuits 27
Section 1. Safety

WARNING

This information is intended for use by individuals possessing adequate backgrounds of electrical and mechanical experience. Any attempt to repair a central air conditioning product may result in personal injury and/or property damage. The manufacture or seller cannot be responsible for the interpretation of this information, nor can it assume any liability in connection with its use.

WARNING

These units use R-410A refrigerant which operates at 50 to 70% higher pressures than R-22. Use only R-410A approved service equipment. Refrigerant cylinders are painted a “Rose” color to indicate the type of refrigerant and may contain a “dip” tube to allow for charging of liquid refrigerant into the system. All R-410A systems use a POE oil that readily absorbs moisture from the atmosphere. To limit this “hygroscopic” action, the system should remain sealed whenever possible. If a system has been open to the atmosphere for more than 4 hours, the compressor oil must be replaced. Never break a vacuum with air and always change the driers when opening the system for component replacement. For specific handling concerns with R-410A and POE oil reference Retrofit Bulletins SS-APG006-EN and APP-APG011-EN or APP-APG012-EN.

WARNING

UNIT CONTAINS R-410A REFRIGERANT! R-410A operating pressures exceed the limit of R-22. Proper service equipment is required. Failure to use proper service tools may result in equipment damage or personal injury.

SERVICE

USE ONLY R-410A REFRIGERANT AND APPROVED POE COMPRESSOR OIL.

WARNING

Extreme caution should be exercised when opening the Liquid Line Service Valve. Turn counterclockwise until the valve stem just touches the rolled edge. No torque is required. Failure to follow this warning will result in abrupt release of system charge and may result in personal injury and/or property damage.

WARNING

LIVE ELECTRICAL COMPONENTS! During installation, testing, servicing, and troubleshooting of this product, it may be necessary to work with live electrical components. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

CAUTION

If using existing refrigerant lines make certain that all joints are brazed, not soldered.

CAUTION

Scroll compressor dome temperatures may be hot. Do not touch the top of compressor; it may cause minor to severe burning.

WARNING

LIVE ELECTRICAL COMPONENTS!
Section 2. Unit Location Considerations

2.1 Unit Dimensions and Weight

Table 2.1

<table>
<thead>
<tr>
<th>Models</th>
<th>H x D x W (in)</th>
<th>Weight* (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4TTA3030A3</td>
<td>33 x 30 x 33</td>
<td>197</td>
</tr>
<tr>
<td>4TTA3036B3</td>
<td>34 x 30 x 33</td>
<td>149</td>
</tr>
<tr>
<td>4TTA3042D3</td>
<td>29 x 34 x 37</td>
<td>196</td>
</tr>
<tr>
<td>4TTA3048D3</td>
<td>29 x 34 x 37</td>
<td>203</td>
</tr>
<tr>
<td>4TTA3060D3</td>
<td>37 x 34 x 37</td>
<td>226</td>
</tr>
<tr>
<td>4TTA3030A4</td>
<td>33 x 30 x 33</td>
<td>195</td>
</tr>
<tr>
<td>4TTA3036B4</td>
<td>34 x 30 x 33</td>
<td>149</td>
</tr>
<tr>
<td>4TTA3042D4</td>
<td>29 x 34 x 37</td>
<td>220</td>
</tr>
<tr>
<td>4TTA3048D4</td>
<td>29 x 34 x 37</td>
<td>218</td>
</tr>
<tr>
<td>4TTA3060D4</td>
<td>37 x 34 x 37</td>
<td>258</td>
</tr>
</tbody>
</table>

* Weight values are estimated.

When mounting the outdoor unit on a roof, be sure the roof will support the unit’s weight.

Properly selected isolation is recommended to alleviate sound or vibration transmission to the building structure.

2.2 Refrigerant Piping Limits

1. The maximum length of refrigerant lines from outdoor to indoor unit should NOT exceed sixty (60) feet.

2. The maximum vertical change should not exceed sixty (60) feet.

3. Service valve connection diameters are shown in Table 5.1.

Note: For line lengths greater than sixty (60) feet, Refer to Refrigerant Piping Application Guide, SS-APG006-EN or Refrigerant Piping Software Program, 32-3312-03 (or latest revision).
2.3 Suggested Locations for Best Reliability

Ensure the top discharge area is unrestricted for at least five (5) feet above the unit.

Three (3) feet clearance must be provided in front of the control box (access panels) and any other side requiring service.

It is not recommended to install in a location where noise may distract the building occupants. Some examples of these types of locations are sleeping quarters and by windows of a living area. Please discuss location with the building owner prior to installation.

Avoid locations such as near windows where condensation and freezing defrost vapor can annoy a customer.

Position the outdoor unit a minimum of 12” from any wall or surrounding shrubbery to ensure adequate airflow.

Outdoor unit location must be far enough away from any structure to prevent excess roof runoff water or icicles from falling directly on the unit.

2.4 Cold Climate Considerations

NOTE: It is recommended that these precautions be taken for units being installed in areas where snow accumulation and prolonged below freezing temperatures occur.

- Units should be elevated 3-12 inches above the pad or rooftop, depending on local weather. This additional height will allow drainage of snow and ice melted during defrost cycle prior to its refreezing. Ensure that drain holes in unit base pan are not obstructed preventing draining of defrost water.

- If possible, avoid locations that are likely to accumulate snow drifts. If not possible, a snow drift barrier should be installed around the unit to prevent a build-up of snow on the sides of the unit.
2.5 Coastal Considerations

If installed within one mile of salt water, including seacoasts and inland waterways, models without factory supplied Seacoast Salt Shields require the addition of BAYSEAC001 (Seacoast Kit) at installation time.

Section 3. Unit Preparation

3.1 Prepare The Unit For Installation

STEP 1 - Check for damage and report promptly to the carrier any damage found to the unit.

STEP 2 - To remove the unit from the pallet, remove tabs by cutting with a sharp tool.

Section 4. Setting the Unit

4.1 Pad Installation

When installing the unit on a support pad, such as a concrete slab, consider the following:

- The pad should be at least 1” larger than the unit on all sides.
- The pad must be separate from any structure.
- The pad must be level.
- The pad should be high enough above grade to allow for drainage.
- The pad location must comply with National, State, and Local codes.

For other applications refer to application guide.
Section 5. Refrigerant Line Considerations

5.1 Refrigerant Line and Service Valve Connection Sizes

<table>
<thead>
<tr>
<th>Model</th>
<th>Liquid Line</th>
<th>Vapor Line</th>
<th>Liquid Line</th>
<th>Vapor Line Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>4TTA3030A3</td>
<td>3/8</td>
<td>3/4</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>4TTA3036B3</td>
<td>3/8</td>
<td>3/4</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>4TTA3042D3</td>
<td>3/8</td>
<td>3/4</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>4TTA3048D3</td>
<td>7/8</td>
<td>3/8</td>
<td>7/8</td>
<td></td>
</tr>
<tr>
<td>4TTA3060D3</td>
<td>7/8</td>
<td>3/8</td>
<td>7/8</td>
<td></td>
</tr>
<tr>
<td>4TTA3030A4</td>
<td>3/8</td>
<td>3/4</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>4TTA3036B4</td>
<td>3/8</td>
<td>3/4</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>4TTA3042D4</td>
<td>3/8</td>
<td>3/4</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>4TTA3048D4</td>
<td>7/8</td>
<td>3/8</td>
<td>7/8</td>
<td></td>
</tr>
<tr>
<td>4TTA3060D4</td>
<td>7/8</td>
<td>3/8</td>
<td>7/8</td>
<td></td>
</tr>
</tbody>
</table>

Note: For other line lengths, Refer to Refrigerant Piping Application Guide, SS-APG006-EN or Refrigerant Piping Software Program, 32-3312-xx (latest revision).
5.2 Factory Charge

Trane outdoor condensing units are factory charged with the system charge required for the outdoor condensing unit, fifteen (15) feet of tested connecting line, and the smallest indoor evaporative coil match. If connecting line length exceeds fifteen (15) feet and/or a larger indoor evaporative coil is installed, then final refrigerant charge adjustment is necessary.

5.3 Required Refrigerant Line Length

Determine required line length and lift. You will need this later in STEP 2 of Section 14.

Total Line Length = __________ Ft.

Total Vertical Change (lift) = __________ Ft.

5.4 Refrigerant Line Insulation

Important: The Vapor Line must always be insulated. DO NOT allow the Liquid Line and Vapor Line to come in direct (metal to metal) contact.
5.5 Reuse Existing Refrigerant Lines

CAUTION

If using existing refrigerant lines make certain that all joints are brazed, not soldered.

For retrofit applications, where the existing indoor evaporator coil and/or refrigerant lines will be used, the following precautions should be taken:

- Ensure that the indoor evaporator coil and refrigerant lines are the correct size.
- Ensure that the refrigerant lines are free of leaks, acid, and oil.

Section 6. Refrigerant Line Routing

6.1 Precautions

Important: Take precautions to prevent noise within the building structure due to vibration transmission from the refrigerant lines.

For Example:

- When the refrigerant lines have to be fastened to floor joists or other framing in a structure, use isolation type hangers.
- Isolation hangers should also be used when refrigerant lines are run in stud spaces or enclosed ceilings.
- Where the refrigerant lines run through a wall or sill, they should be insulated and isolated.
- Isolate the lines from all ductwork.
- Minimize the number of 90° turns.

Comply with National, State, and Local Codes when isolating line sets from joists, rafters, walls, or other structural elements.

Secure Vapor line from joists using isolators every 8 ft. Secure Liquid Line directly to Vapor line using tape, wire, or other appropriate method every 8 ft.
Section 7. Refrigerant Line Brazing

7.1 Braze The Refrigerant Lines

STEP 1 - Remove caps or plugs. Use a deburring tool to debur the pipe ends. Clean both internal and external surfaces of the tubing using an emery cloth.
STEP 2 - Remove the pressure tap cap and valve cores from both service valves.

STEP 3 - Purge the refrigerant lines and indoor coil with dry nitrogen.

STEP 4 - Wrap a wet rag around the valve body to avoid heat damage and continue the dry nitrogen purge.

Braze the refrigerant lines to the service valves.

For units shipped with a field-installed external drier, check liquid line filter drier’s directional flow arrow to confirm correct direction of refrigeration flow (away from outdoor unit and toward evaporator coil) as illustrated. Braze the filter drier to the Liquid Line.

Continue the dry nitrogen purge. Do not remove the wet rag until all brazing is completed.

Important: Remove the wet rag before stopping the dry nitrogen purge.

Note: Install drier in Liquid Line.

Note: Precautions should be taken to avoid heat damage to basepan during brazing. It is recommended to keep the flame directly off of the basepan.
Section 8. Refrigerant Line Leak Check

8.1 Check For Leaks

STEP 1 - Pressurize the refrigerant lines and evaporator coil to 150 PSIG using dry nitrogen.

STEP 2 - Check for leaks by using a soapy solution or bubbles at each brazed location.

Remove nitrogen pressure and repair any leaks before continuing.
Section 9. Evacuation
9.1 Evacuate the Refrigerant Lines and Indoor Coil

Important: Do not open the service valves until the refrigerant lines and indoor coil leak check and evacuation are complete.

STEP 1 - Evacuate until the micron gauge reads no higher than 350 microns, then close off the valve to the vacuum pump.

STEP 2 - Observe the micron gauge. Evacuation is complete if the micron gauge does not rise above 500 microns in one (1) minute.

Once evacuation is complete blank off the vacuum pump and micron gauge, and close the valves on the manifold gauge set.

Section 10. Service Valves
10.1 Open the Gas Service Valve

Important: Leak check and evacuation must be completed before opening the service valves.

NOTE: Do not vent refrigerant gases into the atmosphere.

STEP 1 - Remove valve stem cap.

STEP 2 - Using an adjustable wrench, turn valve stem 1/4 turn counterclockwise to the fully open position.

STEP 3 - Replace the valve stem cap to prevent leaks. Tighten finger tight plus an additional 1/6 turn.
10.1 Open the Liquid Service Valve

WARNING

Extreme caution should be exercised when opening the Liquid Line Service Valve. Turn counterclockwise until the valve stem just touches the rolled edge. No torque is required. Failure to follow this warning will result in abrupt release of system charge and may result in personal injury and/or property damage.

Important: Leak check and evacuation must be completed before opening the service valves.

STEP 1 - Remove service valve cap.

STEP 2 - Fully insert 3/16” hex wrench into the stem and back out counterclockwise until valve stem just touches the rolled edge (approximately five (5) turns.)

STEP 3 - Replace the valve cap to prevent leaks. Tighten finger tight plus an additional 1/6 turn.

Section 11. Electrical - Low Voltage

11.1 Low Voltage Maximum Wire Length

Table 11.1 defines the maximum total length of low voltage wiring from the outdoor unit, to the indoor unit, and to the thermostat.

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>MAX. WIRE LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 AWG</td>
<td>150 Ft.</td>
</tr>
<tr>
<td>16 AWG</td>
<td>225 Ft.</td>
</tr>
<tr>
<td>14 AWG</td>
<td>300 Ft.</td>
</tr>
</tbody>
</table>
With TEM 3, 4, 6

- Units with pigtails require wirenuts for connections. Cap all unused wires.
- In AC systems for multiple stages of electric heat, jumper W1 and W2 together if comfort control has only one stage of heat.
- TEM3/4 - Bypass air handler and connect Y from comfort control directly to OD unit
 * TEM6 Only
 ** TEM6 only - When using a BK enabled comfort control, cut BK jumper and bypass Y1 and Y2 at the air handler. Connect BK from comfort control to BK of the air handler
- TAM4 only - Wire as shown, no BK is available
- TAM7 only - When using a BK enabled comfort control, cut BK jumper on the AFC and connect BK from comfort control to BK of the air handler

With TAM 4, 7

With Furnace

- Units with pigtails require wirenuts for connections. Cap all unused wires.
- In AC systems for multiple stages of heat, jumper W1 and W2 together if comfort control has only one stage of heat.
 * If equipped with second stage heat
 ** When using a BK enabled comfort control, cut BK jumper and bypass Y and YLo at the furnace. Connect BK from comfort control to BK of the furnace
Section 12. Electrical - High Voltage

12.1 High Voltage Power Supply

WARNING

LIVE ELECTRICAL COMPONENTS!
During installation, testing, servicing, and troubleshooting of this product, it may be necessary to work with live electrical components. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

The high voltage power supply must agree with the equipment nameplate. Power wiring must comply with national, state, and local codes.

Follow instructions on unit wiring diagram located on the inside of the control box cover and in the Service Facts document included with the unit.

12.2 High Voltage Disconnect Switch

Install a separate disconnect switch at the outdoor unit.

For high voltage connections, flexible electrical conduit is recommended whenever vibration transmission may create a noise problem within the structure.

12.3 High Voltage Ground

Ground the outdoor unit per national, state, and local code requirements.
Section 13. Start Up

13.1 System Start Up

<table>
<thead>
<tr>
<th>Step</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Ensure Sections 7 through 12 have been completed.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Set System Thermostat to OFF.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Turn on disconnect(s) to apply power to the indoor and outdoor units.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Wait one (1) hour before starting the unit if compressor crankcase heater accessory is used and the Outdoor Ambient is below 70°F.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Set system thermostat to ON.</td>
</tr>
</tbody>
</table>
Section 14. System Charge Adjustment

14.1 Temperature Measurements

STEP 1 - Check the outdoor temperatures.

Subcooling (in cooling mode) is the only recommended method of charging above 55° F ambient outdoor temperature. See Section 14.2.

For outdoor temperatures below 55° F, see Section 14.3.

Note: It is important to return in the spring or summer to accurately charge the system in the cooling mode when outdoor ambient temperature is above 55° F.

For best results the indoor temperature should be kept between 70° F to 80° F.

14.2 Subcooling Charging in Cooling (Above 55° F Outdoor Temp.)

STEP 1 - Use the refrigerant line total length and lift measurements from Section 5.3.

Total Line Length = __________ Ft.

Vertical Change (Lift) = __________ Ft.
STEP 2 - Determine the final subcooling value using total Line Length and Lift measured in **STEP 1** and the charts below.

2 1/2 Ton

<table>
<thead>
<tr>
<th>TOTAL REFRIGERANT LINE LENGTH (FEET)</th>
<th>REFRIGERANT LINE LIFT (FEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
</tr>
</tbody>
</table>

Use Design Subcool Value

3 Ton

<table>
<thead>
<tr>
<th>TOTAL REFRIGERANT LINE LENGTH (FEET)</th>
<th>REFRIGERANT LINE LIFT (FEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
</tr>
</tbody>
</table>

Use Design Subcool Value

3 1/2 Ton

<table>
<thead>
<tr>
<th>TOTAL REFRIGERANT LINE LENGTH (FEET)</th>
<th>REFRIGERANT LINE LIFT (FEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
</tr>
</tbody>
</table>

Use Design Subcool Value

4 Ton

<table>
<thead>
<tr>
<th>TOTAL REFRIGERANT LINE LENGTH (FEET)</th>
<th>REFRIGERANT LINE LIFT (FEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
</tr>
</tbody>
</table>

Use Design Subcool Value

5 Ton

<table>
<thead>
<tr>
<th>TOTAL REFRIGERANT LINE LENGTH (FEET)</th>
<th>REFRIGERANT LINE LIFT (FEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
</tr>
</tbody>
</table>

Use Design Subcool Value

Design Subcooling Value = _________ ° F

(from nameplate or Service Facts)

Subcooling Correction = _________ ° F

Final Subcooling Value = _________ ° F

STEP 3 - Stabilize the system by operating for a minimum of 20 minutes.

At startup, or whenever charge is removed or added, the system must be operated for a minimum of 20 minutes to stabilize before accurate measurements can be made.
STEP 4 - Measure the liquid line temperature and pressure at the outdoor unit’s service valve.

Measured Liquid Line Temp = __________ ° F

Liquid Gage Pressure = __________ PSIG

Final Subcooling Value = __________ ° F

STEP 5 - Use the final subcooling value, refrigerant temperature and pressure from STEP 4, to determine the proper liquid gage pressure using Table 14.2.

Example: Assume a 12° F Final Subcooling value and liquid temp of 90° F.

1. Locate 12° F Final Subcooling in Table 14.2.
2. Locate the Liquid Temperature (90° F) in the left column.
3. The Liquid Gage Pressure should be approximately 327 PSIG. (This is the shown as the intersection of the Final Subcooling column and the Liquid Temperature row.)

<table>
<thead>
<tr>
<th>LIQUID TEMP (°F)</th>
<th>FINAL SUBCOOLING (°F)</th>
<th>LIQUID GAGE PRESSURE (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>8 9 10 11 12 13 14</td>
<td>179 182 185 188 191 195 198</td>
</tr>
<tr>
<td>60</td>
<td>211 215 218 222 225 229 232</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>229 232 236 240 243 247 251</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>247 251 255 259 263 267 271</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>267 271 275 279 283 287 291</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>287 291 296 300 304 309 313</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>309 313 318 322 327 331 336</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>331 336 341 346 351 355 360</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>355 360 365 370 376 381 386</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>381 386 391 396 402 407 413</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>407 413 418 424 429 435 441</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>435 441 446 452 458 464 470</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>464 470 476 482 488 495 501</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>495 501 507 514 520 527 533</td>
<td></td>
</tr>
</tbody>
</table>

From Dwg. D154S57P01 Rev. 3
STEP 6 - Adjust refrigerant level to attain proper gage pressure.

Add refrigerant if the Liquid Gage Pressure is lower than the chart value.

1. Connect gages to refrigerant bottle and unit as illustrated.
2. Purge all hoses.
3. Open bottle.
4. Stop adding refrigerant when liquid line temperature and Liquid Gage Pressure matches the charging chart Final Subcooling value.

Recover refrigerant if the Liquid Gage Pressure is higher than the chart value.

STEP 7 - Stabilize the system.

1. Wait 20 minutes for the system condition to stabilize between adjustments.

Note: When the Liquid Line Temperature and Gage Pressure approximately match the chart, the system is properly charged.

2. Remove gages.
3. Replace service port caps to prevent leaks. Tighten finger tight plus an additional 1/6 turn.

STEP 8 - Verify typical performance.

Refer to System Pressure Tables to verify typical performance.

(Example only - see Pressure Tables)
STEP 9 - Record System Information for reference.

Record system pressures and temperatures after charging is complete.

Outdoor model number = ________________

Measured Suction Line Temp = __________ °F

Measured Outdoor Ambient = __________ °F

Liquid Gage Pressure = __________ PSIG

Measured Indoor Ambient = __________ °F

Suction Gage Pressure = __________ PSIG

Measured Liquid Line Temp = __________ °F

14.3 Subcooling Charging Below 55° F Outdoor Temp.

The Subcooling Charging method in cooling is **not** recommended below 55° F outdoor temperature.

The recommended method of charging at outdoor temperatures below 55° F is weighing in the charge. Return when weather conditions permit charge verification through subcooling.

STEP 1 - Determine additional charge.

Note: The nameplate charge value represents the amount of refrigerant shipped in the outdoor unit and is compatible with 15 feet of AHRI rated refrigerant lines and the smallest AHRI rated coil.

Using the method below, find the charge associated with the additional length of tubing above 15 ft. and record it below.

Calculating Charge Using the Weigh-In Method

1) Measure in feet the distance between the outdoor unit and the indoor unit. (Include the entire length of the line from the service valve to the IDU.) Subtract 15 ft from this entire length and record on line 1.

2) Enter the charge multiplier (0.6 oz/ft). Each linear foot of interconnecting tubing requires the addition of 0.6 oz of refrigerant.

3) Multiply the total length of refrigerant tubing (Line 1) times the value on Step 2. Record the result on Line 3 of the Worksheet.

4) This is the amount of refrigerant to weigh-in prior to opening the service valves.

1. Total Line length (ft) –15 ft __________

2. Charge multiplier x __________ 0.6 oz

3. Step 1 x Step 2 = __________

4. Refrigerant (oz) = __________
STEP 2 - Stabilize the system by operating for a minimum of 20 minutes.

At startup, or whenever charge is removed or added, the system must be operated for a minimum of 20 minutes to stabilize before accurate measurements can be made.

STEP 3 - Check the liquid line temperature and liquid gage pressure to obtain a minimum of 10° subcooling in heating mode.

Measured Liquid Line Temp = __________ ° F

Liquid Gage Pressure = __________ PSIG

STEP 4 - Add charge if a minimum of 10° subcooling is not obtained with the nameplate charge plus additional charge previously added.

STEP 5 - Return to site for adjustment.

Important: Return in the spring or summer to accurately charge the system in the cooling mode with outdoor ambient above 55° F.
Final phases of this installation are the unit Operational and Checkout Procedures. To obtain proper performance, all units must be operated and charge adjustments made.

Important: Perform a final unit inspection to be sure that factory tubing has not shifted during shipment. Adjust tubing if necessary so tubes do not rub against each other when the unit runs. Also be sure that wiring connections are tight and properly secured.

CHECKOUT PROCEDURE

After installation has been completed, it is recommended that the entire system be checked against the following list:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Leak check refrigerant lines.</td>
</tr>
<tr>
<td>2.</td>
<td>Properly insulate suction lines and fittings.</td>
</tr>
<tr>
<td>3.</td>
<td>Properly secure and isolate all refrigerant lines.</td>
</tr>
<tr>
<td>4.</td>
<td>Seal passages through masonry. If mortar is used, prevent mortar from coming into direct contact with copper tubing.</td>
</tr>
<tr>
<td>5.</td>
<td>Verify that all electrical connections are tight.</td>
</tr>
<tr>
<td>6.</td>
<td>Observe outdoor fan during on cycle for clearance and smooth operation.</td>
</tr>
</tbody>
</table>
15.2 Troubleshooting

TROUBLESHOOTING

Compressor fails to start
Contactor check

Is contactor energized? (contacts closed)

YES → Go To: Compressor won’t run

NO → Check for 24 volts AC across contactor coil

Is voltage present at contactor coil?

YES → Replace contactor

NO → Check control transformer and control fuse

Is the control transformer and fuse good?

YES → Jumper R to Y low voltage terminals at thermostat sub base.

NO → Repair or replace transformer or fuse. Investigate cause for failure (possible short in field wiring)

Does the contactor energize?

YES → Replace the room thermostat

NO → Repair or replace connecting wiring

Single Pole Contactor (MS)*

```
IN |
---
L1 |
T1 |
T2 |
OUT
---
HIGH VOLTAGE
```

Double Pole Contactor (MS)

```
IN |
---
L1 |
T1 |
T2 |
OUT
---
HIGH VOLTAGE
```

*Refer to Wiring Diagram to determine if a single pole or double pole contactor is used.
TROUBLESHOOTING

Compressor won’t run
Contactor is closed

Check for high voltage to contactor

Is high voltage present at T1 and T2? NO

Check power supply from disconnect and/or breaker panel.

YES

Check for open IOL (Internal Overload)
Check resistance of C to S and C to R

Does the resistance check show an open circuit from C to S or C to R?

YES

Allow compressor time to cool and re-test

NO

Check for open windings.

Does a resistance check show an open circuit between R and S?

YES

Replace the compressor

NO

Check for locked rotor

Is voltage present at C to S and C to R with locked rotor amps on C?

YES

Check Start-Capacitor and Relay (if present) and Run Capacitor

NO

Check wiring to compressor C, S and R

Do the start components and run capacitor check good?

YES

Replace the compressor

NO

Replace start components and/or run capacitor
15.2 Troubleshooting

SYSTEM FAULTS

<table>
<thead>
<tr>
<th>Refrigerant Circuit</th>
<th>C - Head Pressure Too High</th>
<th>H - Head Pressure Too Low</th>
<th>S - Suction Pressure Too High</th>
<th>P - Suction Pressure Too Low</th>
<th>C - Liquid Refrigerant Floodback (TXV/EEV)</th>
<th>H - Liquid Refrigerant Floodback (Cap. Tube)</th>
<th>C - I.D. Coil Frosting</th>
<th>C - Compressor Runs</th>
<th>H - Inadequate or No Cooling/Htg</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>S</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>C</td>
<td>P</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>H</td>
<td>P</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

Electrical

<table>
<thead>
<tr>
<th>Component</th>
<th>C - Compressor & O.D. Fan Won't Start</th>
<th>H - Compressor Will Not Start But O.D. Fan Runs</th>
<th>C - O.D. Fan Won't Start</th>
<th>H - Compressor Hums But Won't Start</th>
<th>C - Compressor Cycles on IOL</th>
<th>H - I.D. Blower Won't Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>H</td>
<td>P</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
</tr>
</tbody>
</table>

Defrost

<table>
<thead>
<tr>
<th>Component</th>
<th>C - Unit Won't Initiate Defrost</th>
<th>H - Defrost Terminates on Time</th>
<th>C - Unit Icing Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>H</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

C - Cooling, H - Heating, P - Primary Causes, S - Secondary Causes, ★ - 3 Phase Only
16.0 Refrigerant Circuits

030 Units

INDOOR SECTION

- Refrigerant Flow
- Indoor Coil
- Check Valve
- Expansion Valve (or FCCV)
- Field Connection
- 1/4 Flare Pressure Tap

OUTDOOR SECTION

- Suction Line
- Compressor
- Liquid Line
- Drier
- Discharge Line
- Refrigerant Flow

036, 042, 048 & 060 Units

INDOOR SECTION

- Refrigerant Flow
- Indoor Coil
- Check Valve
- Expansion Valve (or FCCV)
- Field Connection
- 1/4 Flare Pressure Tap

OUTDOOR SECTION

- Suction Line
- Compressor
- Liquid Line
- Drier
- Discharge Line
- Refrigerant Flow

PRINTED FROM D153258 REV.0

PRINTED FROM C151866