Installation

Variable Refrigerant Flow System

Outdoor Unit Series

Models:

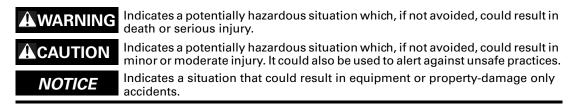
(HR, 460V) (HP, 208–230 V) (HP, 460 V) (HR, 208-230 V) 4TVH0072B300NB 4TVH0072B400NB 4TVR0072B300NB 4TVR0072B400NB 4TVH0096B300NB 4TVH0096B400NB 4TVR0096B300NB 4TVR0096B400NB 4TVH0120B300NB 4TVH0120B400NB 4TVR0120B300NB 4TVR0120B400NB 4TVH0144B300NB 4TVH0144B400NB 4TVR0144B300NB 4TVR0144B400NB 4TVH0168B300NC 4TVH0168B400NC 4TVR0168B300NC 4TVR0168B400NC 4TVH0192B300NC 4TVH0192B400NC 4TVR0192B300NC 4TVR0192B400NC

ASAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.

September 2015

VRF-SVN34C-EN



Introduction

Warnings, Cautions, and Notices

Safety advisories appear throughout this manual as required. Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.

The three types of advisories are defined as follows:

Important Environmental Concerns

Scientific research has shown that certain man-made chemicals can affect the earth's naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants-including industry replacements for CFCs such as HCFCs and HFCs.

Important Responsible Refrigerant Practices

Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified. The Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.

WARNING

Proper Field Wiring and Grounding Required!

Failure to follow code could result in death or serious injury. All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state electrical codes. Failure to follow code could result in death or serious injury.

WARNING

Personal Protective Equipment (PPE) Required!

Installing/servicing this unit could result in exposure to electrical, mechanical and chemical hazards.

- Before installing/servicing this unit, technicians MUST put on all PPE required for the work being undertaken (Examples; cut resistant gloves/sleeves, butyl gloves, safety glasses, hard hat/bump cap, fall protection, electrical PPE and arc flash clothing). ALWAYS refer to appropriate Material Safety Data Sheets (MSDS)/Safety Data Sheets (SDS) and OSHA guidelines for proper PPE.
- When working with or around hazardous chemicals, ALWAYS refer to the appropriate MSDS/ SDS and OSHA/GHS (Global Harmonized System of Classification and Labelling of Chemicals) guidelines for information on allowable personal exposure levels, proper respiratory protection and handling instructions.
- If there is a risk of energized electrical contact, arc, or flash, technicians MUST put on all PPE in accordance with OSHA, NFPA 70E, or other country-specific requirements for arc flash protection, PRIOR to servicing the unit. NEVER PERFORM ANY SWITCHING, DISCONNECTING, OR VOLTAGE TESTING WITHOUT PROPER ELECTRICAL PPE AND ARC FLASH CLOTHING. ENSURE ELECTRICAL METERS AND EQUIPMENT ARE PROPERLY RATED FOR INTENDED VOLTAGE.

Failure to follow instructions could result in death or serious injury.

Copyright

This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.

Trademarks

All trademarks referenced in this document are the trademarks of their respective owners.

Revision History

Revision C includes new 14- and 16-ton capacity models and new system combinations up to 44 tons.

Table of Contents

Model Number Description6
Preparing for Installation
Minimum Operating Clearances
Outdoor Unit Combinations
Accessories
Moving the Outdoor Unit
Location Considerations14
Unit Installation
Base Recommendations
Water Management
Securing the Outdoor Unit 18
Condenser Air Discharge Duct (optional)
Wind/Snow Prevention Duct Installation (optional)
Refrigerant Piping
Selecting Refrigerant Piping 21 Heat Pump Applications 21 Heat Recovery Applications 24 Pipe Thickness and Temper Grade 27
Storing Refrigerant Piping
Installing Refrigerant Piping 28 Overview 29 Pipe Cutting 29 Nitrogen Flushing While Brazing 29 Flared Pipe Connections 30 Connecting Piping to the Outdoor Unit 31 Connecting Outdoor Units with Y-joints 32 Refrigerant Piping Installation Examples: Heat Pump 34 Refrigerant Piping Installation Examples: Heat Recovery 38
Electrical Wiring
Power Wiring
Grounding
Communications Wiring 47
Leak Testing Pipe Connections 49
Vacuum Drying
Insulating Refrigerant Pipes 53
Refrigerant

Calculating the Refrigerant 55 Charging Refrigerant 57
Control System 59 Monitoring System Power and Communication Status 60 System Configuration 60
Initiating System Operations 64 Monitoring System Settings and Software Versions 65
Pre-Start Checks
Test Operation
Refrigerant Amount Detection Operation
Troubleshooting

Model Number Description

4	т	v	R	0	0	9	6	В	3	0	0	Ν	В	Α
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Digit 1: Refrigerant

4 = R-410A

Digit 2: Brand name

T = Trane

Digit 3: System type V = Variable Refrigerant Flow

Digit 4: Functional Type Outdoor Unit

H = Heat Pump, DC Inverter (VRF) R = Heat Recovery (3-pipe), DC Inverter (VRF)

Digit 5: Efficiency Tier and/or

Special Application

0 = Standard

Digit 6, 7, 8: Nominal capacity (Btu/h x 1,000)

072 = 72,000 Btu/h (VRF) 096 = 96,000 Btu/h (VRF) 120 = 120,000 Btu/h (VRF) 144 = 144,000 Btu/h (VRF) 168 = 168,000 Btu/h (VRF) 192 = 192,000 Btu/h (VRF)

Digit 9: Major development sequence

B = Second development sequence

Digit 10: Electric power supply characteristics

3 = 208–230/60/3 4 = 460/60/3

Digit 11: Reserved for future use

0 = Standard

Digit 12: Miscellaneous digit

0 = Not currently used

Digit 13: Region of sale

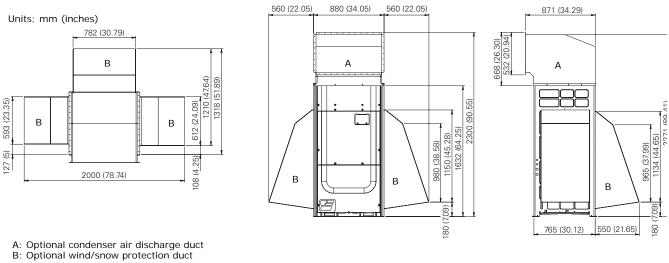
N = North America (VRF)

Digit 14: Minor design sequence

A = First design sequence

B = Second design sequence C = Third design sequence

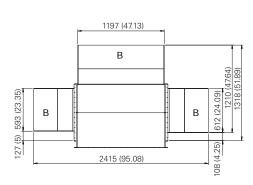
Digit 15: Service digit (not used for ordering)

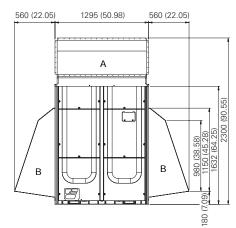

A = First sequence B = Second sequence

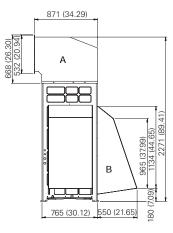
Preparing for Installation

Unit Dimensions and Weights

Table 1. Unit dimensions and weights

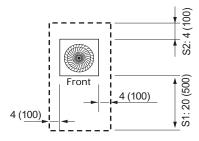

Unit type	Unit model number	Dimensions (WxHxD) in. (mm)	Weight lb (kg)	Shipping dimensions (WxHxD) in. (mm)	Shipping weight lb (kg)
-	4TVH0072B300NB	34.6x66.7x30.1 (880x1695x765)	425.5 (193)	37.3 x 74.3 x 32.8 (948 x 1887 x 832)	460.8 (209)
	4TVH0096B300NB		623.9 (283)		665.8 (302)
Heat Pump (203–230 V)	4TVH0120B300NB	51.0x66.7x30.1	023.9 (203)		005.8 (302)
(203-230 V)	4TVH0144B300NB	(1295x1695x765)	657.0 (298)	53.7 X 74.3 x 32.8 (1363 x 1887 x 832)	698.9 (317)
	4TVH0168B300NC	(12/0/10/0//00)	716.5 (325)]	754.0 (342)
	4TVH0192B300NC		734.5 (333)	7	772.0 (350)
	4TVR0072B300NB	34.6x66.7x30.1 (880x1695x765)	429.9 (195)	37.3 x 74.3 x 32.8 (948 x 1887 x 832)	465.2 (211)
	4TVR0096B300NB		637.1 (289)		670.0 (208)
Heat Recovery (203–230 V)	4TVR0120B300NB		037.1 (209)		679.0 (308)
(203-230 V)	4TVR0144B300NB	51.0x66.7x30.1 (1295x1695x765)	672.4 (305)	53.7 X 74.3 x 32.8 (1363 x 1887 x 832)	714.3 (324)
	4TVR0168B300NC	(12/0/10/0/100)	732.0 (332)		769.5 (349)
	4TVR0192B300NC		750.0 (340)		787.5 (357)
	4TVH0072B400NB	34.6x66.7x30.1 (880x1695x765)	436.5 (198)	37.3 x 74.3 x 32.8 (948 x 1887 x 832)	471.8 (214)
	4TVH0096B400NB		540.1 (245)		582.0 (264)
Heat Pump (460 V)	4TVH0120B400NB		540.1 (245)		562.0 (204)
(460 V)	4TVH0144B400NB	51.0x66.7x30.1 (1295x1695x765)	672.4 (305)	53.7 X 74.3 x 32.8 (1363 x 1887 x 832)	714.3 (324)
	4TVH0168B400NC	(719.0 (326)]	756.5 (343)
	4TVH0192B400NC		736.5 (334)	7	774.0 (351)
	4TVR0072B400NB	34.6x66.7x30.1 (880x1695x765)	445.3 (202)	37.3 x 74.3 x 32.8 (948 x 1887 x 832)	480.6 (218)
	4TVR0096B400NB				
Heat Recovery	4TVR0120B400NB		553.4 (251)		595.2 (270)
(460 V)	4TVR0144B400NB	51.0x66.7x30.1 (1295x1695x765)	692.3 (314)	53.7 X 74.3 x 32.8 (1363 x 1887 x 832)	734.1 (333)
	4TVR0168B400NC	(12/0/10/00/00)	734.5 (333)		772.0 (350)
	4TVR0192B400NC		752.0 (341)	1	789.5 (358)

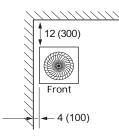

Figure 1. Dimensional drawing: 4TVH0072****/4TVR0072****


Figure 2. Dimensional drawing: 4TVH0096/120/144/168/192****/4TVR0096/120/144/168/192****

Units: mm (inches)

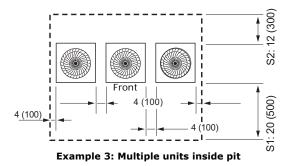
A: Optional condenser air discharge duct B: Optional wind/snow protection duct





Minimum Operating Clearances

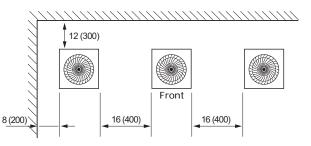
Install units as shown in the illustrations below, observing ventilation and service requirements. Space requirements are based on cooling mode operation and an outdoor temperature of 95°F (35°C). More space is required if the outdoor temperature is higher than 95°F (35°C) or if the area is easily heated by solar radiation.


Figure 3. Minimum operating clearances for single and multiple units

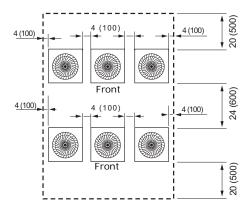
Example 1: Single unit inside pit

Example 2: Single unit inside wall

Notes:

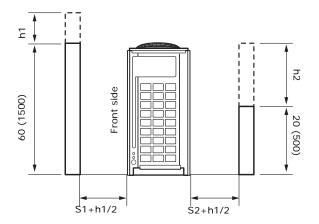


Clearances in this manual are minimum for system operation. all installations shall comply with codes and standards adopted by the Authority Having Jurisdiction (AHJ).


S1 = Front service clearance S2 = Back service clearance See Figure 4, p. 10 for details.

You may install multiple outdoor units with a minimum 1 in. (20 mm) of space between them, but reduced capacity may occur depending on the installation environment.

Clearance requirements are waived for any unit sides that have wind/snow protection ducts installed on them, due to the wind/snow protection duct size, which exceeds clearance requirements.


Example 4: Multiple units inside wall

Example 5: Multiple units inside pit

Figure 4. Dimension limits for pit

Note: This figure refers to Figure 3, examples 1, 3, 5.

Front wall height recommendation: 60 in. (1500 mm) maximum. Back wall height recommendation: 20 in. (500 mm) maximum. Side wall height is unlimited.

If a wall exceeds the recommended height, an additional clearance of half of the exceeded height should be added to the service clearance. (Clearances are given in Figure 3, p. 9).

- S1 = Front service clearance
- S2 = Back service clearance
- h1 = Wall height in excess of 60 in. (1500 mm)
- h2 = Wall height in excess of 20 in. (500 mm)

Outdoor Unit Combinations

Use the following table to determine the size and number of outdoor units needed to achieve the capacity requirements.

Follow these guidelines:

- Make sure to use indoor units that are compatible with the outdoor unit.
- The minimum capacity of an indoor unit is 7.5 MBH (7500 Btu/h).
- Indoor units can be connected within the ranges indicated in Table 2 and Table 3.
- If the total capacity of the connected indoor units exceeds the indicated maximum capacity, the cooling and heating capacity of the indoor unit may decrease.
- You can connect a maximum of 64 indoor units to the outdoor unit. The maximum quantity of connectable indoor units is 64 because the outdoor unit supports a maximum of 64 communication addresses.
- If you choose to select outdoor unit combination other than the ones in Table 2 or Table 3, the total capacity of connected indoor units is allowed to be 50%–130% of the outdoor unit capacity: [0.5 x total outdoor unit capacity ≤ total connected indoor unit capacity ≤ 1.3 x total outdoor unit capacity].

Capacity		6 ton	8 ton	10 ton	12 ton	14 ton	16 ton	18 ton	20 ton	22 ton	24 ton
Outdoor un number	Outdoor unit combination number		4TV*0096	4TV*0120	4TV*0144	4TV*0168	4TV*0192	4TV*0216	4TV*0240	4TV*0264	4TV*0288
	Total number of individual outdoor units		1	1	1	1	1	2	2	2	2
	4TV*0072	1						1	1	1	
	4TV*0096		1								
Combined outdoor	4TV*0120			1							
unit	4TV*0144				1			1			2
	4TV*0168					1			1		
	4TV*0192						1			1	
Nominal	Cooling (Btu/h)	72000	96000	120000	144000	168000	192000	216000	240000	264000	288000
Capacity	Heating (Btu/h)	81000	108000	135000	162000	189000	216000	243000	270000	297000	324000
Rated	Cooling (Btu/h)	69000	92000	114000	138000	160000	184000	206000	228000	252000	276000
Capacity	Heating (Btu/h)	77000	103000	129000	154000	180000	206000	230000	258000	282000	308000
Total	Minimum (Btu/h)	36000	48000	60000	72000	84000	96000	108000	120000	132000	144000
capacity of connected indoor units (cooling)	Maximum (Btu/h)	93600	124800	156000	187200	218400	249600	280800	312000	343200	374400
Maximum o connectabl	quantity of e indoor units	12	16	20	25	29	33	37	41	45	49

 Table 2.
 Outdoor unit combinations: 6–24 ton capacity

Table 3. Outdoor unit combinations: 26–44 ton capacity

(Capacity	26 ton	28 ton	30 ton	32 ton	34 ton	36 ton	38 ton	40 ton	42 ton	44 ton
Model name for Combination		4TV*0312	4TV*0336	4TV*0360	4TV*0384	4TV*0408	4TV*0432	4TV*0456	4TV*0480	4TV*0504	4TV*0528
Total number of individual outdoor units		2	2	2	2	3	3	3	3	3	3
	4TV*0072					1					
	4TV*0096										
Combined outdoor	4TV*0120							1			
unit	4TV*0144	1				1	3		1		
	4TV*0168	1	2	1				2	2	3	2
	4TV*0192			1	2	1					1
Nominal	Cooling (Btu/h)	312000	336000	360000	384000	408000	432000	456000	480000	504000	528000
capacity	Heating (Btu/h)	351000	378000	405000	432000	459000	486000	513000	540000	567000	594000
Rated	Cooling (Btu/h)	298000	320000	344000	366000	390000	415000	435000	455000	480000	500000
capacity	Heating (Btu/h)	334000	360000	386000	410000	435000	460000	490000	510000	535000	560000
Total	Minimum (Btu/h)	156000	168000	180000	192000	204000	216000	228000	240000	252000	264000
capacity of indoor units (cooling)	Maximum (Btu/h)	405600	436800	468000	499200	530400	561600	592800	624000	655200	686400
	quantity of le indoor units	54	58	62	64	64	64	64	64	64	64

Accessories

Accessories that ship with the unit are:

- Instruction manual
- Brand label and instruction sheet
- Pipe installation sockets (see Table 4 and Figure 5).

 Table 4.
 Pipe installation socket size chart

			Heat re	covery		Heat pump		
Model number	Connection type	Gas	Liquid	High- pressure gas	Socket needed	Gas	Liquid	Socket needed
4TV*0072***** (6 ton)	Unit connection	3/4 in.	3/8 in.	5/8 in.	No	2/4 in	3/8 in.	No
	Field connection	3/4 111.	3/0 111.	5/6 111.	NO	3/4 in.	3/0 111.	NO
4TV*0096***** (8 ton) ^(a)	Unit connection	1-1/8 in.	1/2 in.	7/8 in.	Yes	1 in.	1/2 in.	Yes
410.0098	Field connection	7/8 in.	3/8 in.	3/4 in.	res	7/8 in.	3/8 in.	
4TV*0120***** (10 ton) ^(a)	Unit connection	- 1-1/8 in.	1/2 in.	7/8 in.	Yes	1 in.	1/2 in.)/
41V^0120^^^^ (10 ton) ⁽⁰⁾	Field connection			3/4 in.		1-1/8 in.	172 m.	Yes
4TV*0144***** (12 ton) ^(a)	Unit connection	1-1/8 in.	5/8 in.	1-1/8 in.	Yes	1-1/8 in.	1/2 in.	No
41V °0144° °° °° (12 ton) (a)	Field connection	1-1/8 10.	1/2 in.	7/8 in.	res	1-1/8 10.	1/2 10.	NO
4TV*0168***** (14 ton) ^(a)	Unit connection	1-1/8 in.	5/8 in.	1-1/8 in.	Yes	1 1/0 im	5/8 in.	No
41V 0168 (14 ton)	Field connection	1-1/8 10.	5/8 10.	7/8 in.	res	1-1/8 in.	5/8 IN.	NO
4T)/*0102***** (16 top)	Unit connection	1-1/8 in.	E (0 in	1 1/0 in	Ne		E /0 in	No
4TV*0192***** (16 ton)	Field connection	1-1/8 IN.	5/8 in.	1-1/8 in.	No	1-1/8 in.	5/8 in.	No

(a) Cut socket as needed for 8, 10, 12, and 14 ton units.

Figure 5. Pipe installation sockets

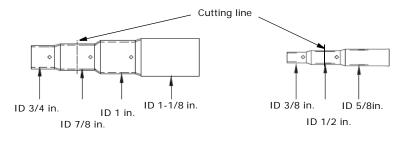
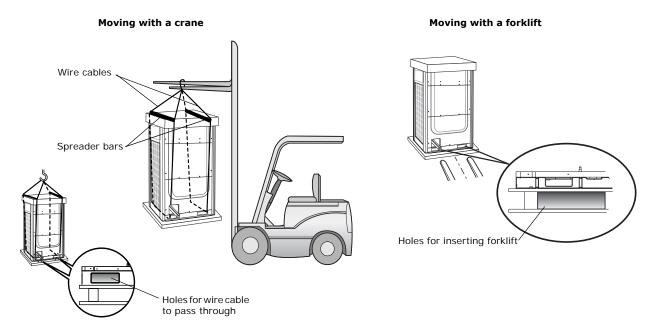


Table 5. Piping connectors

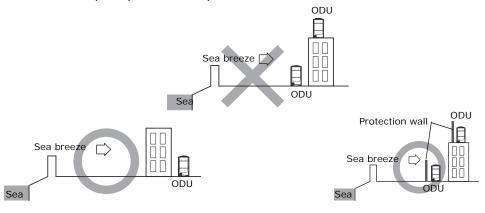

Accessory	Model number	Specification
	4YDK1509B0051A	51 MBH and below
	4YDK2512B0138A	52–136 MBH
	4YDK2812B0160A	137–154 MBH
Indoor Y-joint	4YDK2815B0240A	155–240 MBH
	4YDK3419B0336A	241–336 MBH
	4YDK4119B0468A	337–461 MBH
	4YDK4422B0999A	Above 461 MBH
	4YDK1500B0080A	76 MBH and below
Indoor Y-joint for heat recovery	4YDK2500B0240A	77–240 MBH
(high-pressure gas)	4YDK3100B0468A	241–461 MBH
	4YDK3800B0999A	Above 461 MBH
	4HJK2512B0159A	154 MBH and below (maximum number of connections: 4)
Distribution header	4HJK3115B0241A	240 MBH and below (maximum number of connections: 8)
	4HJK3819B0998A	Above 240 MBH (maximum number of connections: 8)
Outdoor V joint	4TDK3819B0000A	456 MBH and below
Outdoor Y-joint	4TDK4422B0999A	Above 456 MBH
Outdoor Y-joint for heat recovery	4TDK3100B0000A	456 MBH and below
(high-pressure gas)	4TDK3800B0999A	Above 456 MBH
	4EEVEVA24SA000	< 15.5 MBH (for 1 indoor unit)
	4EEVEVA32SA000	≥ 17 MBH (for 1 indoor unit
	4EEVXDA24K132A	7-15.5 MBH (for 2 indoor units)
	4EEVXDA24K200A	7-15.5 MBH (for 2 indoor units)
Electronic expansion valve (EEV) kit ^(a)	4EEVXDA32K200A	17-31 MBH (for 2 indoor units)
	4EEVXDA24K232A	7-15.5 MBH (for 3 indoor units)
	4EEVXDA24K300A	7-15.5 MBH (for 3 indoor units)
	4EEVXDA32K224A	17-31 MBH (for 3 indoor units)
	4EEVXDA32K300A	17-31 MBH (for 3 indoor units)

(a) Required for indoor units that do not have internal EEVs. Refer to the EEV kit installation guide (VRF-SVN43) for detailed information.

Moving the Outdoor Unit

Follow these guidelines when moving the outdoor unit:

- Before moving the outdoor unit, determine a path that can support its weight.
- Do not lay the unit on its side and do tip it more than 30 degrees.
- Take care to avoid injury while moving the unit; the surface of the heat exchanger is sharp.
 - If moving the unit with a crane, fasten the wire rope as shown in the figure below. To protect damage or scratches to the unit, use a spreader bar.
 - If moving the unit with a forklift, carefully insert forks into the forklift holes at the bottom of the outdoor unit. Be careful with to avoid damaging the unit with the forklift.



Location Considerations

Choose an installation location based on the following considerations.

- Install the outdoor unit:
 - On a supporting structure that can bear the weight of the outdoor unit. The supporting structure can be a base on the ground, on a waterproof roof, or in a pit.
 - With sufficient clearances around the unit for service and repairs.
 - On a flat surface that does not collect water
 - In a well ventilated location.
 - Away from strong wind.
 - Away from direct exposure to snow.
 - Where there is no risk of flammable gas leakage.
 - Where there is no exposure to salt, machine oil, sulfide gas, or corrosive environmental conditions.
 - Away from sea breeze.

Note: For seacoast applications, block the unit from direct exposure to sea breeze by installing the outdoor unit (ODU) behind a structure (such as a building) or a protective wall that is 1.5 times higher than the unit, leaving 28 in. (700 mm) of space between the wall and unit for air circulation. Consult an installation expert about taking anti-corrosion measures, such as removing salinity on the heat exchanger and applying a rust inhibitor more frequently than once a year.

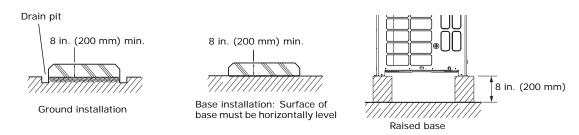
- At least 9.84 ft (3 m) away from equipment that generates electromagnetic waves.
- Away from interfering sources, such as radio, computer, and stereo equipment.
- Far enough away from people living and working nearby so that hot discharge air or noise do not disturb them.
- Away from inflammable materials.
- Ensure that condensate water generated by the outdoor unit can drain smoothly away from the unit.
- Install the power and communication cables in a separately installed enclosure.
- If installing on a high place such as a roof, a fence or guard rail should be installed around the unit to safeguard it from falling.
- If there is a potential for accumulated snow to block the air inlet or heat exchanger, install the unit on a base higher than the highest possible snow accumulation.
- R-410A refrigerant is a safe, nontoxic and nonflammable refrigerant. However, if there is a
 concern about a dangerous level of refrigerant concentration in the case of refrigerant leakage,
 add extra ventilation.
- Avoid installing the outdoor unit where corrosive gases, such as sulfur oxides, ammonia, and sulfurous gas, are produced. If unavoidable, consult with an installation specialist about using a corrosion-proof or anti-rust additive to protect the unit coils.
- Apply corrosion protection and any other protective coatings to the unit as appropriate to the environment.

Unit Installation

Follow these guidelines for installing the outdoor unit.

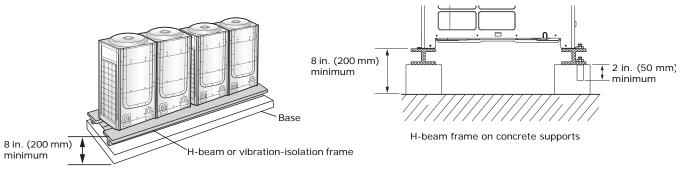
Important: The manufacturer is not responsible for damage incurred for installations that have not followed these guidelines.

The outdoor unit must be installed:

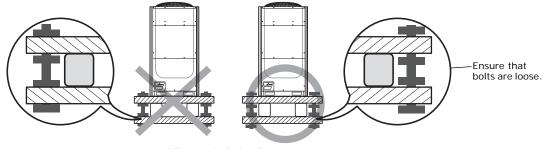

- On a horizontally level surface.
- On a surface that is strong enough to support the unit and to minimize noise.

Base Recommendations

General Guidelines


A supporting base for the outdoor unit:

- Is typically made of concrete.
- If necessary, has wire mesh or steel bars added to the concrete to prevent damages or cracks.
- Should typically be 1.5 times larger than the bottom of the outdoor unit. However, for installations that are subject to snow accumulation, the base should be no larger than the bottom of the unit.
- Should be 8 in. (200 mm) or higher to protect the outdoor unit from rain water or other conditions that may cause damage to the unit.
 - **Note:** The base height or, if the unit is installed on a frame (see "Minimizing Vibration" p. 16), the base height plus the frame height, should be greater than the highest expected snowfall.

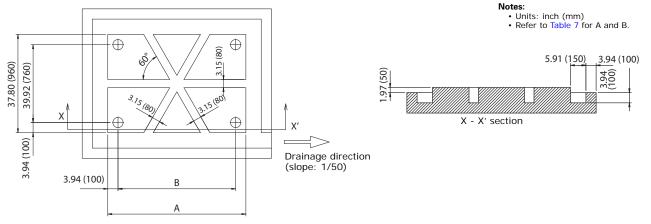

Minimizing Vibration

To minimize outdoor unit vibrations, use a vibration-minimizing structure such as an H-beam frame, a vibration-isolation frame, or an isolation pad (thickness > 1 in. [20 mm]). The load-bearing force of the structure must be 787 lbf (3.5 kN).

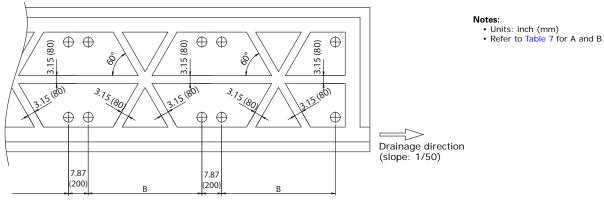
After installing a vibration-isolation frame:

• Loosen the bolts so that the isolators are capable of absorbing vibrations (refer to the figure below).

Vibration-isolation frame

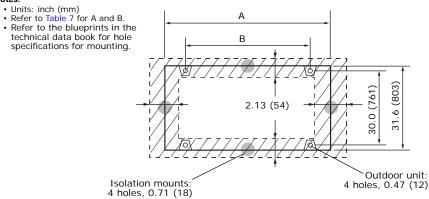

• Apply corrosion-resistant protection to the frame.

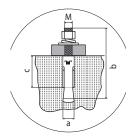
Water Management


If the outdoor unit base is at ground level, construct a drainage pit around it to prevent the drain water from collecting near the unit.

- Use wire mesh or steel bar for constructing the drainage pit.
- Construct the pit with a slope of 1:50.

Figure 6. Water management for single-unit installation


Securing the Outdoor Unit


Secure the outdoor unit firmly to the base with anchor bolts, as specified in Figure 8, Table 6, and Table 7).

- Use zinc-plated or stainless steel nuts and bolts.
- Use a rubber washer between the bolt and the outdoor unit to prevent bimetallic corrosion.
- If you cannot attach the outdoor unit to the base, secure it from the side or to an additional structure.

Figure 8. Bolt hole sizes and locations for mounting the outdoor unit

Notes:

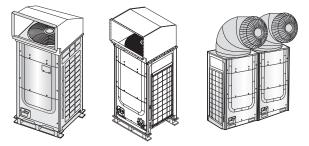
Table 6. Anchor specification

Size	Drill bit	Anchor length	Sleeve length	Insertion depth	Fastening
(M)	diameter (a)	(b)	(c)		torque
10 mm	1/2 in. (14 mm)	3 in. (75 mm)	1-1/2 in. (40 mm)	2 in. (50 mm)	265.5 in lbf (30 N⋅m)

Table 7. Unit and bolt dimensions

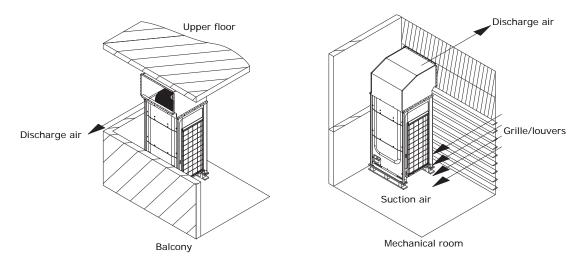
Dimensions	4TV*072****	4TV*096/120/144/168/192*****
Unit width (A)	37.01 in. (940 mm)	53.15 in. (1350 mm)
Distance between bolts (B)	29.13 in. (740 mm)	45.28 in. (1150 mm)

Condenser Air Discharge Duct (optional)


Sharp Edges!

Working with galvanized sheet metal involves working with sharp edges. To avoid being cut, technicians MUST put on all necessary Personal Protective Equipment (PPE), including gloves and arm guards.

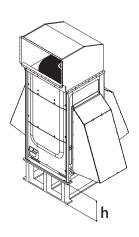
If you remove the fan guard to install the discharge duct, make sure to install a safety net on the duct outlet to prevent foreign substances from entering the unit and to prevent the risk of personal injury from sharp fan blades.

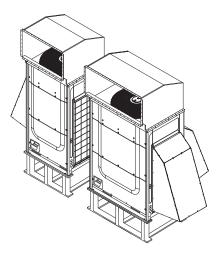

A discharge duct can be installed on the outdoor unit to prevent foreign substances from entering the unit.

The static pressure of the discharge duct should be within the standard specification of 0.32 inches of water (4.98 Pa) when installing the duct.

Examples of condenser air discharge ducts

If it is difficult to provide a minimum of 6.56 ft (2 m) of space between the air outlet and nearby obstacles, direct the discharge air horizontally from the fan.


Wind/Snow Prevention Duct Installation (optional)


A wind/snow prevention should be installed:

- To prevent snow from accumulating on the outdoor unit and the risk of accumulated frost, which may interfere with normal heating operation.
- To protect the unit from humid air, such as near a sea shore.
- For heat recovery applications requiring the use of low ambient cooling (below 23°F [-5°C]).
- For applications requiring the use of low ambient heating (below 23°F [-5°C]).

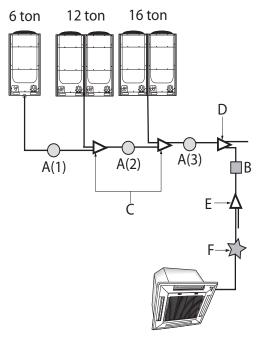
Install the duct so that:

- The discharge air and prevailing wind are not going the same direction.
- The discharge air is not directed to the enclosed area.
- The height (**h**) of the frame or base should be a minimum of 12 inches plus the additional height of the heaviest expected snowfall. (Example: If the base height is the minimum 12 inches and the heaviest expected snow load is 6 inches, then $\mathbf{h} = 12$ inches + 6 inches = 18 inches).

Refrigerant Piping

This section contains information on selecting, storing, and connecting refrigerant piping.

Selecting Refrigerant Piping

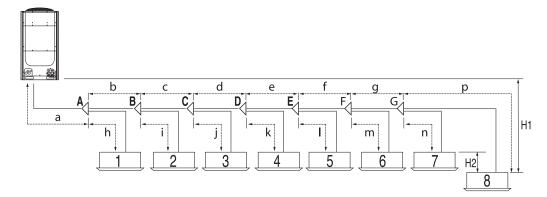

The VRF Selection Software calculates refrigeration piping diameters, associated capacity losses, and additional refrigerant charge based on Type ACR copper tubing. It is recommended to use insulated, unwelded, degreased, and deoxidized copper ACR pipe (Cu-DHP type according to ISO 1337 or UNI EN 12735-1) suitable for an operating pressure of at least 609.15 psi (4200 kPa) and a burst pressure of at least 3002.28 psi (20,700 kPa). Alternative refrigeration piping is addressed in document VRF-APG001A-EN, *Alternative VRF Refrigerant Pipe and/or Assembly Methods*. Copper pipe for hydro-sanitary applications is unsuitable.

- 1. Select refrigerant piping according to length. Consider maximum piping length and height differences (Table 23, p. 36 or Table 25, p. 39).
- 2. Determine pipe and Y-joint size (see "Heat Pump Applications" p. 21" or "Heat Recovery Applications" p. 24).
 - **Note:** If there is a risk of decreased performance caused by pipe length, use piping that is one size larger in diameter than what is specified in this section.

Heat Pump Applications

Figure 9 shows an example of a typical 34-ton capacity heat pump application. In this module installation example, all pipes and Y-joints are identified. Table 8, p. 22 through Table 9, p. 23 show how to determine their sizes.

Figure 9. Typical heat pump system installation, example 1



Key

- A(1), A(2), A(3): Main pipes (Table 8, p. 22).
- B: Pipe size between Y-joints (Table 9, p. 23).
- C: Y-joints between outdoor units (Table 10, p. 23).
- D: First Y-joint according to outdoor unit capacity (Table 11, p. 23).
- E: Y-joints connected after the first branch, according to indoor unit capacity (Table 12, p. 23).
- F: Pipe size between Y-joints and indoor units (Table 13, p. 24).

The capacity of the outdoor unit(s), in addition to the distance from the outdoor unit to the furthest indoor unit (IDU 8 in Figure 10), is used to determine the diameter of the main pipe (A in Figure 10).

Figure 10. Typical heat pump system installation, example 2

Use Table 8 to determine the diameter of the main pipe. If distance a+b+c+d+e+f+g+p > 295.3 ft, the main pipe (A in Figure 10) must be upsized.

Table 8. Outdoor unit main pipe size based on distance from outdoor unit to furthest indoor unit (A)

Outdoor unit capacity		when distance f	e size (OD) rom outdoor unit to it is ≤ 295.3 ft (90 m)	Main pipe size (OD) when distance from outdoor unit to furthes indoor unit > 295.3 ft (90 m)				
Ton	мвн	Liquid in. (mm)	Gas in. (mm)	Liquid in. (mm)	Gas in. (mm)			
6	72	3/8 (9.52)	3/4 (19.05)	1/2 (12.70)	7/8 (22.22)			
8	96	3/8 (9.52)	7/8 (22.22)	1/2 (12.70)	1 (25.4) ^(a)			
10	120	1/2 (12.70)	1-1/8 (28.58)	5/8 (15.88)	1-1/8 (28.58)			
12	144	1/2 (12.70)	1-1/8 (28.58)	5/8 (15.88)	1-1/4 (31.75) ^(b)			
14	168	5/8 (15.88)	1-1/8 (28.58)	3/4 (19.05)	1-1/4 (31.75) ^(b)			
16	192	5/8 (15.88)	1-1/8 (28.58)	3/4 (19.05)	1-1/4 (31.75) ^(b)			
18	216	5/8 (15.88)	1-1/8 (28.58)	3/4 (19.05)	1-1/4 (31.75) ^(b)			
20	240	5/8 (15.88)	1-1/8 (28.58)	3/4 (19.05)	1-1/4 (31.75) ^(b)			
22	264	3/4 (19.05)	1-3/8 (34.92)	7/8 (22.22)	1-1/2 (38.1) ^(c)			
24	288	3/4 (19.05)	1-3/8 (34.92)	7/8 (22.22)	1-1/2 (38.1) ^(c)			
26	312	3/4 (19.05)	1-3/8 (34.92)	7/8 (22.22)	1-1/2 (38.1) ^(c)			
28	336	3/4 (19.05)	1-3/8 (34.92)	7/8 (22.22)	1-1/2 (38.1) ^(c)			
30	360	3/4 (19.05)	1-5/8 (41.28)	7/8 (22.22)	1-5/8 (41.28)			
32	384	3/4 (19.05)	1 5/8 (41.28)	7/8 (22.22)	1-5/8 (41.28)			
34	408	3/4 (19.05)	1 5/8 (41.28)	7/8 (22.22)	1-5/8 (41.28)			
36	432	3/4 (19.05)	1 5/8 (41.28)	7/8 (22.22)	1-5/8 (41.28)			
38	456	3/4 (19.05)	1-5/8 (41.28)	7/8 (22.22)	1-5/8 (41.28)			
40	480	3/4 (19.05)	1 5/8 (41.28)	7/8 (22.22)	1-5/8 (41.28)			
42	504	3/4 (19.05)	1 5/8 (41.28)	7/8 (22.22)	1-5/8 (41.28)			
44	528	3/4 (19.05)	1 5/8 (41.28)	7/8 (22.22)	1-5/8 (41.28)			

(a) If 1 (25.4) pipe is not available on site, use 1-1/8 (28.58) pipe.
(b) If 1-1/4(31.75) pipe is not available on site, use 1-3/8 (34.92) pipe.
(c) If 1-1/2 (38.1) pipe is not available on site, use 1-5/8 (41.28) pipe.

Use Table 9 to determine pipe size between Y-joints (B in Figure 9, p. 21).

Table 9. Pipe size between indoor Y-joints (B)

Indoor unit		e (OD) when pipe is 5 ft (45 m)	Branch pipe size (OD) when pipe is 147.6-295.3 ft (45-90 m)		
total capacity (MBH)	Liquid in. (mm)	Gas in. (mm)	Liquid in. (mm)	Gas in. (mm)	
≤ 51	3/8 (9.52)	5/8 (15.88)	1/2 (12.70)	3/4 (19.05)	
52-76	3/8 (9.52)	3/4 (19.05)	1/2 (12.70)	7/8 (22.22)	
77-96	3/8 (9.52)	7/8 (22.22)	1/2 (12.70)	1 (25.4) ^(a)	
97-135	1/2 (12.70)	1-1/8 (28.58)	5/8 (15.88)	1-1/8 (28.58)	
136-153	1/2 (12.70)	1-1/8 (28.58)	5/8 (15.88)	1-1/4 (31.75) ^(b)	
154-239	5/8 (15.88)	1-1/8 (28.58)	3/4 (19.05)	1-1/4 (31.75) ^(b)	
240-335	3/4 (19.05)	1-3/8 (34.92)	7/8 (22.22)	1-1/2 (38.1) ^(c)	
336-460	3/4 (19.05)	1-5/8 (41.28)	7/8 (22.22)	1-5/8 (41.28)	
461–577	3/4 (19.05)	1-5/8 (41.28)	7/8 (22.22)	2-1/8 (53.98)	
> 577	7/8 (22.22)	2-1/8 (53.98)	1 (25.40)	2-1/8 (53.98)	

(a) If 1 (25.4) pipe is not available on site, use 1-1/8 (28.58) pipe.
(b) If 1-1/4 (31.75) pipe is not available on site, use 1-3/8 (34.92) pipe.
(c) If 1-1/2 (38.1) pipe is not available on site, use 1-5/8 (41.28) pipe.

Use Table 10, Table 11, and Table 12 to select Y-joints (C, D, and E in Figure 9, p. 21).

Table 10. Outdoor Y-joint between outdoor units (C)

Outdoor unit capacity (tons)	Model	
6–38	4TDK3819B0000A	
40–44	4TDK4422B0999A	

Table 11. First indoor Y-joint according to outdoor unit capacity (D)

Outdoor unit capacity (tons)	Model
6–10	4YDK2512B0138A
12	4YDK2812B0160A
14–20	4YDK2815B0240A
22–28	4YDK3419B0336A
30–38	4YDK4119B0468A
40-44	4YDK4422B0999A

Total indoor unit capacity (MBH) ^(a)	Model		
≤ 51 MBH	4YDK1509B0051A		
52–136	4YDK2512B0138A		
137–154	4YDK2812B0160A		
155–240	4YDK2815B0240A		
241–336	4YDK3419B0336A		
337–461	4YDK4119B0468A		
> 461	4YDK4422B0999A		

(a) Indoor Y-joints are selected based on downstream indoor unit capacity: the first indoor Y-joint will be the largest, the second indoor Y-joint will be smaller, and so on.

	Pipe siz	ze (OD)
Indoor unit capacity (MBH)	Liquid in. (mm)	Gas in. (mm)
< 20	1/4 (6.35)	1/2 (12.70)
24-52	3/8 (9.52)	5/8 (15.88)
68–78	3/8 (9.52)	3/4 (19.05)
78–96	3/8 (9.52)	7/8 (22.22)

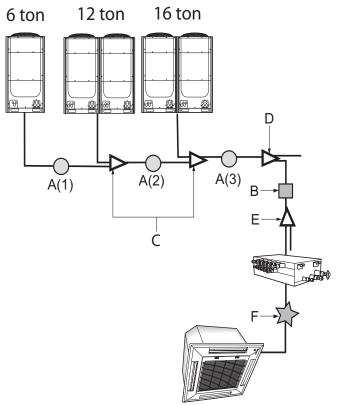
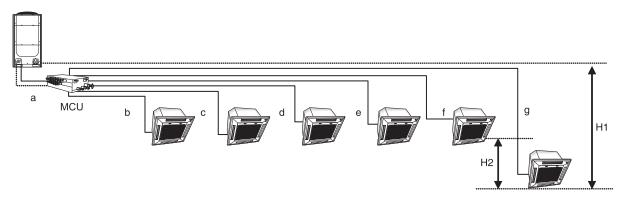

Use Table 13 to determine pipe size between indoor Y-joints and indoor units (F in Figure 15, p. 34).

Table 13. Pipe size between the indoor Y-joint and indoor unit (F)

Heat Recovery Applications

Figure 11 shows an example of a 34-ton capacity heat recovery application. In this module installation example, all pipes and Y-joints are identified. Table 14, p. 25 through Table 19, p. 27 show how to determine their sizes.


Figure 11. Typical heat recovery system installation, example 1

Key

- A(1), A(2), A(3): Main pipes (Table 14, p. 25).
- B: Pipe size between Y-joint and MCU (Table 15, p. 26).
- C: Outdoor Y-joints between outdoor units (Table 16, p. 26).
- D: First Y-joint according to outdoor unit capacity (Table 17, p. 26).
- E: Y-joints connected to MCUs or other Y-joints (Table 18, p. 27).
- F: Pipe size between MCUs and indoor units (Table 19, p. 27).

The capacity of the outdoor unit(s), in addition to the distance from the outdoor unit to the furthest indoor unit ("g" in Figure 12), is used to determine the diameter of the main pipe (A in Figure 12).

Use Table 14 to determine the diameter of the main pipe. If distance a+g > 295.3 ft, the main pipe (A in Figure 12) must be upsized.

Table 14. Outdoor unit main pipe size based on distance from outdoor unit to furthest indoor unit (A)

Outdoor unit capacity		Main pipe size (OD) when disance from outdoor unit to furthest indoor unit is ≤ 295.3 ft (90 m)		Main pipe size (OD) when distance from outdoor unit to furthest indoor unit > 295.3 ft (90 m)			
Ton	МВН	Liquid in. (mm)	Gas in. (mm)	High- pressure gas in. (mm)	Liquid ^(a) in. (mm)	Gas in. (mm)	High- pressure gas in. (mm)
6	72	3/8 (9.52)	3/4 (19.05)	5/8 (15.88)	1/2 (12.70)	3/4 (19.05)	5/8 (15.88)
8	96	3/8 (9.52)	7/8 (22.22)	3/4 (19.05)	1/2 (12.70)	7/8 (22.22)	3/4 (19.05)
10	120	1/2 (12.70)	1-1/8 (28.58)	7/8 (22.22)	5/8 (15.88)	1-1/8 (28.58)	7/8 (22.22)
12	144	1/2 (12.70)	1-1/8 (28.58)	7/8 (22.22)	5/8 (15.88)	1-1/8 (28.58)	7/8 (22.22)
14	168	5/8 (15.88)	1-1/8 (28.58)	7/8 (22.22)	3/4 (19.05)	1-1/8 (28.58)	7/8 (22.22)
16	192	5/8 (15.88)	1-1/8 (28.58)	1-1/8 (28.58)	3/4 (19.05)	1-1/8 (28.58)	1-1/8 (28.58)
18	216	5/8 (15.88)	1-1/8 (28.58)	1-1/8 (28.58)	3/4 (19.05)	1-1/8 (28.58)	1-1/8 (28.58)
20	240	5/8 (15.88)	1-1/8 (28.58)	1-1/8 (28.58)	3/4 (19.05)	1-1/8 (28.58)	1-1/8 (28.58)
22	264	3/4 (19.05)	1-3/8 (34.92)	1-1/8 (28.58)	7/8 (22.22)	1-3/8 (34.92)	1-1/8 (28.58)
24	288	3/4 (19.05)	1-3/8 (34.92)	1-1/8 (28.58)	7/8 (22.22)	1-3/8 (34.92)	1-1/8 (28.58)
26	312	3/4 (19.05)	1-3/8 (34.92)	1-1/8 (28.58)	7/8 (22.22)	1-3/8 (34.92)	1-1/8 (28.58)
28	336	3/4 (19.05)	1-3/8 (34.92)	1-1/8 (28.58)	7/8 (22.22)	1-3/8 (34.92)	1-1/8 (28.58)
30	360	3/4 (19.05)	1-5/8 (41.28)	1-3/8 (34.92)	7/8 (22.22)	1-5/8 (41.28)	1-3/8 (34.92)
32	384	3/4 (19.05)	1-5/8 (41.28)	1-3/8 (34.92)	7/8 (22.22)	1-5/8 (41.28)	1-3/8 (34.92)
34	408	3/4 (19.05)	1-5/8 (41.28)	1-3/8 (34.92)	7/8 (22.22)	1-5/8 (41.28)	1-3/8 (34.92)
36	432	3/4 (19.05)	1-5/8 (41.28)	1-3/8 (34.92)	7/8 (22.22)	1-5/8 (41.28)	1-3/8 (34.92)
38	456	3/4 (19.05)	1-5/8 (41.28)	1-3/8 (34.92)	7/8 (22.22)	1-5/8 (41.28)	1-3/8 (34.92)
40	480	3/4 (19.05)	1-5/8 (41.28)	1-3/8 (34.92)	7/8 (22.22)	1-5/8 (41.28)	1-3/8 (34.92)
42	504	3/4 (19.05)	1-5/8 (41.28)	1-3/8 (34.92)	7/8 (22.22)	1-5/8 (41.28)	1-3/8 (34.92)
44	528	3/4 (19.05)	1-5/8 (41.28)	1-3/8 (34.92)	7/8 (22.22)	1-5/8 (41.28)	1-3/8 (34.92)

(a) Increase the liquid pipe by one size if the pipe length > 295.3 ft (90 m), as specified in this column.

Indoor unit total	Branch pipe size (OD)				
capacity (MBH)	Liquid in. (mm)	Gas in. (mm)	High-pressure gas in. (mm)		
< 51	3/8 (9.52)	5/8 (15.88)	5/8 (15.88)		
51–75	3/8 (9.52)	3/4 (19.05)	5/8 (15.88)		
76-96	3/8 (9.52)	7/8 (22.22)	3/4 (19.05)		
97-114	1/2 (12.70)	1-1/8 (28.58)	3/4 (19.05)		
115-153	1/2 (12.70)	1-1/8 (28.58)	7/8 (22.22)		
154–171	5/8 (15.88)	1-1/8 (28.58)	7/8 (22.22)		
172-239	5/8 (15.88)	1-1/8 (28.58)	1-1/8 (28.58)		
240-335	3/4 (19.05)	1-3/8 (34.92)	1-1/8 (28.58)		
336–359	3/4 (19.05)	1-5/8 (41.28)	1-1/8 (28.58)		
360-460	3/4 (19.05)	1-5/8 (41.28)	1-3/8 (34.92)		
461–577	3/4 (19.05)	1-5/8 (41.28)	1-3/8 (34.92)		
> 577	7/8 (22.22)	2-1/8 (53.98)	1-5/8 (41.28)		

Use Table 15 to determine pipe size between Y-joints (B in Figure 11, p. 24).

Table 15. Pipe size between indoor Y-joints, and between the indoor Y-joint and the MCU (B)

Use Table 16, Table 17, and Table 18 to select Y-joints (C, D, and E in Figure 11, p. 24).

Table 16. C	Outdoor Y -j	joint between	outdoor	units	(C)
-------------	---------------------	---------------	---------	-------	-----

Y-joint between outdoor units (C)	Outdoor unit capacity (ton)	Model
For low-pressure gas and liquid lines	6–38	4TDK3819B0000A
r or iow-pressure gas and inquid lines	40-44	4TDK4422B0999A
For high-pressure gas line	6–38	4TDK3100B0000A
For high-pressure gas line	40-44	4TDK3800B0999A

Table 17. First Y-joint according to outdoor unit capacity (D)

First indoor Y-joint (D)	Outdoor unit capacity (ton)	Model
	6–10	4YDK2512B0138A
	12	4YDK2812B0160A
For low-pressure gas and liquid lines	14–20	4YDK2815B0240A
r or iow-pressure gas and liquid lines	22–28	4YDK3419B0336A
	30–38	4YDK4119B0468A
	40-44	4YDK4422B0999A
	6	4YDK1500B0080A
For high-pressure gas line	8–20	4YDK2500B0240A
	22–38	4YDK3100B0468A
	40-44	4YDK3800B0999A

Y-joints after the first Y-joint (E)	Total indoor unit capacity (MBH) ^(a)	Model
	≤ 51	4YDK1509B0051A
	52—136	4YDK2512B0138A
	137—154	4YDK2812B0160A
Indoor Y-joint	155—240	4YDK2815B0240A
	241—336	4YDK3419B0336A
	337—461	4YDK4119B0468A
	> 461	4YDK4422B0999A
	≤ 76	4YDK1500B0080A
Ligh process goo V isint (for boot receivers models)	77—240	4YDK2500B0240A
High-pressure gas Y-joint (for heat recovery models)	241—461	4YDK3100B0468A
	> 461	4YDK3800B0999A

Table 18	Indoor	Y-joint between	MCUs or an	other Y-joint (E)
----------	--------	-----------------	------------	-------------------

(a) Y-joints are selected based on downstream indoor unit capacity (first Y-joint will be largest, second Y-joint may be smaller, and so on).

Use Table 19 to determine pipe size between Y-joints and MCUs (F in Figure 11, p. 24).

Table 19. Pipe size between MCUs and indoor units (F)

	Pipe size (OD) (F)			
Indoor unit capacity (MBH)	Liquid in. (mm)	Gas in. (mm)		
< 20	1/4 (6.35)	1/2 (12.70)		
24-52	3/8 (9.52)	5/8 (15.88)		
68–78	3/8 (9.52)	3/4 (19.05)		
78–96	3/8 (9.52)	7/8 (22.22)		

Pipe Thickness and Temper Grade

Table 20 specifies pipe minimum thickness and temper grade based on pipe diameter.

Risk of Pipes Breaking!

If pipes with a diameter larger than 3/4 in. (19.05 mm) are specified, use semi-hard (C1220T-1/2H) or hard (C1220T-H) copper piping. If a softer copper pipe (C1220T-O) is used, the pipe may break due to its low pressure resistance and cause personal injury.

Table 20. Refrigerant pipe minimum thickness and temper grade

Outer diameter in. (mm)	Minimum thickness in. (mm)	Temper grade	
1/4 (6.35)	0.028 (0.70)		
3/8 (9.52)	0.028 (0.70)	Annealed	
1/2 (12.70)	0.031 (0.80)	(C1220T-O)	
5/8 (15.88)	0.039 (1.00)]	

Outer diameter in. (mm)	Minimum thickness in. (mm)	Temper grade
3/4 (19.05)	0.035 (0.9)	
7/8 (22.22)	0.035 (0.9)	7
1 (25.40)	0.039 (1.0)	7
1-1/8 (28.58)	0.043 (1.1)	7
1-1/4 (31.75)	0.043 (1.1)	7
1-3/8 (34.92)	0.048 (1.35)	Drawn (C1220T-1/2H or C1220T-H)
1-1/2 (38.10)	0.053 (2.0)	
1-5/8 (41.28)	0.056 (1.43)	7
1-3/4 (44.45)	0.063 (2.10)	7
2 (50.80)	0.079 (2.00)	7
2-1/8 (53.98)	0.083 (2.10)	7

Table 20.	Refrigerant pi	pe minimum	thickness	and temper	grade (continued)
-----------	----------------	------------	-----------	------------	-------------------

Storing Refrigerant Piping

To prevent foreign materials or water from entering the pipe, storing method and sealing method (especially during installation) is very important. Apply correct sealing method depending on the environment (see Table 21).

 Table 21. Refrigerant pipe storage factors

Storage location	Storage time	Sealing type
Outdoor	Longer than one month	Pipe pinch
Outdoor	Shorter than one month	Taping
Indoor	_	Taping

Installing Refrigerant Piping

WARNING

Hazard of Explosion and Deadly Gases!

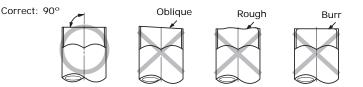
Failure to follow all proper safe refrigerant handling practices could result in death or serious injury. Never solder, braze or weld on refrigerant lines or any unit components that are above atmospheric pressure or where refrigerant may be present. Always remove refrigerant by following the guidelines established by the EPA Federal Clean Air Act or other state or local codes as appropriate. After refrigerant removal, use dry nitrogen to bring system back to atmospheric pressure before opening system for repairs. Mixtures of refrigerants and air under pressure may become combustible in the presence of an ignition source leading to an explosion. Excessive heat from soldering, brazing or welding with refrigerant vapors present can form highly toxic gases and extremely corrosive acids.

NOTICE:

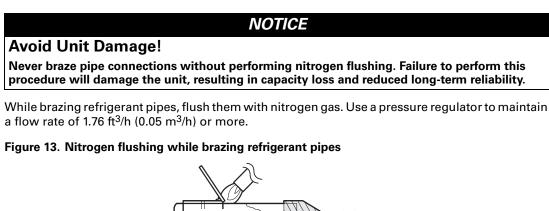
System Component Damage!

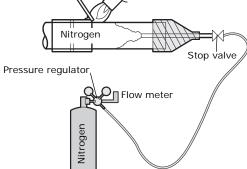
Do not remove the seal caps from refrigerant connections or open the service valves until you are prepared to braze refrigerant lines to the connections. Excessive exposure to atmosphere (> 5 min.) may allow moisture or dirt to contaminate the system, damaging valve seals and causing ice formation in system components.

Overview


- Cut or extend field-supplied piping as needed. To extend pipes, braze or using flared pipe connections (not supplied). Refer to "Pipe Cutting" p. 29, "Nitrogen Flushing While Brazing" p. 29, and "Flared Pipe Connections" p. 30.)
- 2. Make sure that pipes are free of dirt, debris, and moisture, and do not leak. (Refer to "Leak Testing Pipe Connections" p. 49).
- 3. Braze or use flared pipe connections to install piping. Refer to "Connecting Piping to the Outdoor Unit" p. 31) and to "Connecting Outdoor Units with Y-joints" p. 32.

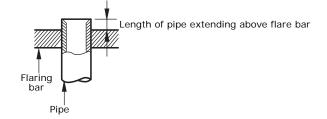
Pipe Cutting


Required tools:

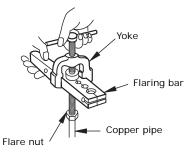

- Pipe cutter
- Reamer
- Pipe holder
- 1. Using a pipe cutter, cut the pipe so that the cut edge is at 90° to the side of the pipe.
- 2. Use a reamer to remove all burrs at the cut edge.

See examples of correctly and incorrectly cut pipes.

Nitrogen Flushing While Brazing



Flared Pipe Connections

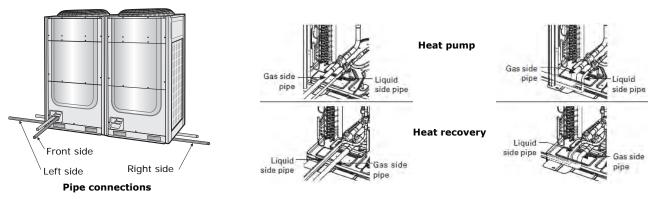

Clutch type and wing nut type flare tools are available for flared pipe connections.

- 1. Slide the flare nut over the pipe to be flared.
- 2. Slide the end of the pipe into the hole on the flaring bar that fits the pipe, leaving a length of pipe, determined by tool type (see table), extending above the flaring bar. Clamp it down.

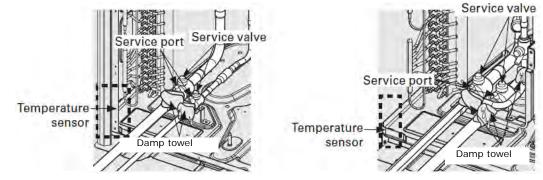
R-410A clutch type	Conventional flare tool			
R-410A clutch type	Clutch type	Wing nut type		
0–0.020 in.	0.06–0.08 in.			
L. L				

- 3. Attach the yoke to the flaring bar, centering the conical part over the end of the pipe that is extending above the flaring bar.
- 4. Tighten the yoke securely to flare the end of the pipe.

5. Remove the pipe. The end of the pipe that you flared should look like the end of a trumpet. See examples of correctly and incorrectly flared pipes.


Outer diameter in. (mm)	Connection torque (ft·lb)	Flare dimension (in.)	Flare shape (in.)
1/4 (6.35)	10.3–13.3 ft·lb	0.34-0.36	X
3/8 (9.52)	25.1–31.0 ft·lb	0.50-0.52	°N (°N (⊤ ℝ.016–.031
1/2 (12.70)	36.1–45.0 ft lb	0.64-0.65	+ + ↓ ♥━━━━━
5/8 (15.88)	50.2-60.5 ft·lb	0.76–0.78	66 67 <u>66</u> 60 00

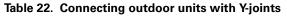
6. Align the pipes and tighten the flare nuts manually and then with a spanner torque wrench, applying the torque according to pipe dimensions:

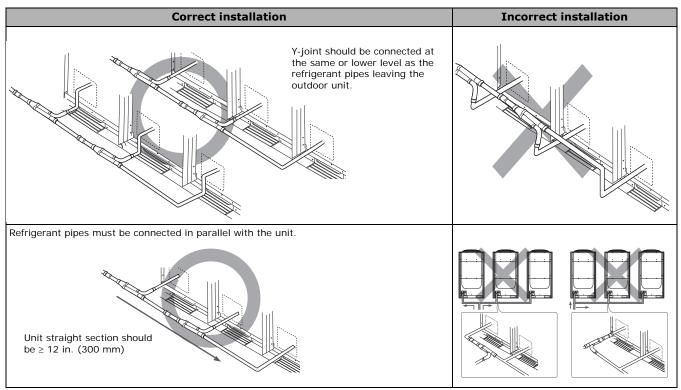

Connecting Piping to the Outdoor Unit

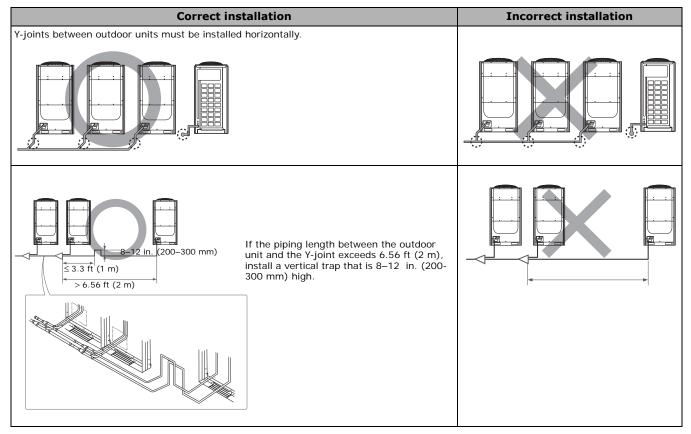
Important: Ensure that all pipe connections are accessible for servicing and maintenance.

Pipes can be connected to the outdoor unit at the front, bottom left, or bottom right of the unit, as shown in the following figure:

- 1. Remove the pipe cover from the outdoor unit.
- 2. Remove the knock-outs that you are going to use. Unused knock-outs should remain closed to prevent damage to the unit.
 - Take care to prevent damage to the exterior of the unit.
 - Remove burrs from knock-out hole edges and apply rust inhibitor.
- 3. Connect the pipes to the outdoor unit using flared connections or by brazing. If brazing the pipe connection, avoid damaging the service valve by wrapping it with a wet cloth as shown in Figure 14, p. 32.
 - Avoid damaging the temperature sensor.
 - Ensure that the connected pipes do not touch each other or make contact with the unit.
- 4. After making electrical connections (see "Electrical Wiring" p. 40) and insulating the pipes (see "Insulating Refrigerant Pipes" p. 53), replace the pipe cover and close the remaining gap.


Figure 14. Protecting the unit and temperature sensor while brazing the pipe connection


Connecting Outdoor Units with Y-joints


Important: Ensure that all pipe connections are accessible for servicing and maintenance. For optimal refrigerant distribution, use only factory joints.

Install outdoor Y-joints as needed to connect multiple outdoor units to one another (refer to Table 22). Install Y-joints as needed to connect outdoor units to indoor units. See the branch joint installation manual (VRF-SVN41) for details.

Note: Outdoor units can be installed in any order.

Table 22. Connecting outdoor units with Y-joints (continued)

Refrigerant Piping Installation Examples: Heat Pump

Notes:

- Y-joints are preferred over distribution headers. Distribution headers should be used only if unable to meet a minimum of 19.5 inches of straight piping entering a Y-joint.
- Install indoor units from largest to smallest capacity starting at the inlet of the distribution header.
- If there are unused ports on a distribution header, pinch off the ports first that are closest to the inlet.

Figure 15. Single installations with Y-joints: Heat pump

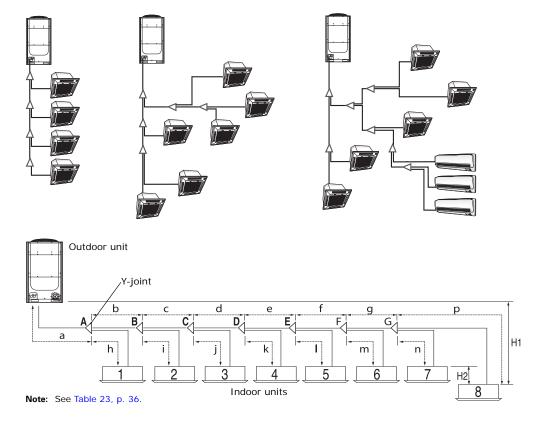
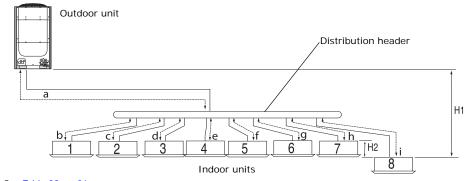



Figure 16. Single installation with distribution header: Heat pump

Note: See Table 23, p. 36.

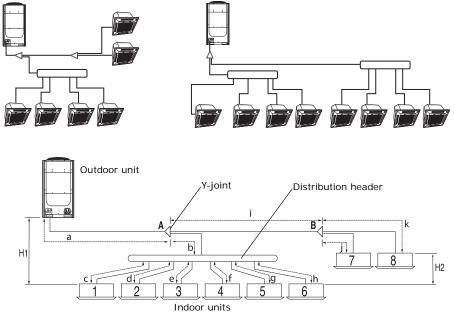
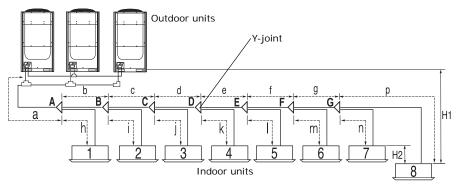



Figure 17. Single installations with Y-joint and distribution header: Heat pump

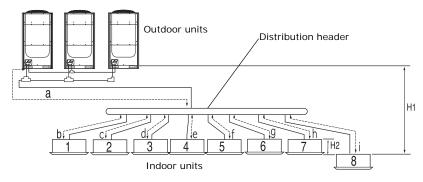
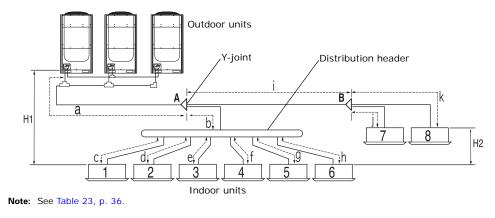

Note: See Table 23, p. 36.

Figure 18. Module installation with Y-joint: Heat pump



Note: See Table 23, p. 36.

Note: See Table 23, p. 36.

Figure 20. Module installation with Y-joint and distribution header: Heat pump

	Piping location	Piping length and height differences ft (m)		Notes/Examples	
Maximum allowable piping length	Outdoor unit to indoor unit	Actual piping length [equivalent length] ^(a)	656 [722] ft and below (200 [220] m and below]	Y-joint only	$a+b+c+d+e+f+g+p \le 656$ [722] ft (200 [220] m); see Figure 15, p. 34 and Figure 18, p. 35
				Distribution header only	a+i ≤ 656 [722] ft (200 [220] m); see Figure 16, p. 34 and Figure 19, p. 35
				Y-joint and distribution header	$a+b+h \le 656 [722] ft (200 [220] m a+i+k \le 656 [722] ft (200 [220] m;see Figure 17, p. 35 andFigure 20, p. 36$
		Total piping length	3281 ft (1000 m) or less	Y-joint only	see Figure 15, p. 34 and Figure 18, p. 35
				Distribution header only	a+b+c+d+e+f+g+p+h+i ≤3281 ft (1000 m); see
				Y-joint and distribution header	Figure 16, p. 34 and Figure 19, p. 35
	Between outdoor	Piping length	33 ft (10 m) or less	r ≤ 33 ft (10 m), s ≤ 33 ft (10 m), t ≤ 33 ft (10 n	
	units (module installation)	Equivalent length	43 ft (13 m) or less	r \leq 43 ft (13 m), s \leq 43 ft (13 m), t \leq 43 ft (13 r	
Maximum allowable piping height difference	Outdoor unit to indoor unit	361/131 ft (110/40 m) ^(b)		H1 ≤ 164/131 ft (50/40 m)	
	Indoor unit to indoor unit	164 ft (50 m) or less		H2 ≤ 164 ft (50 m)	
Maximum piping	First Y-joint to farthest indoor unit		148 ft (45 m) or less	b+c+d+e+f+g+p ≤ 148 ft (45 m), i ≤ 148 ft (45 m	
length after Y-joint		Piping length	(148–295 ft (45–90 m)	Required conditions must be satisfied (see Table 24, p. 37)	

	Piping location		height differences m)	Notes/Examples				
		Actual piping length	6.6 ft (2 m) or less	4EEVEVA24SA000 4EEVEVA32SA000	For 1 indoor unit			
Electronic expansion valve (EEV) kit ^(c)	Indoor unit			4EEVXDA24K132A 4EEVXDA24K200A 4EEVXDA32K200A	For 2 indoor units			
			66 ft (20 m) or less	4EEVXDA24K232A 4EEVXDA24K300A 4EEVXDA32K224A 4EEVXDA32K300A	For 3 indoor units			

Table 23. Maximum allowable refrigerant piping length and height differences for heat pump installations

(a) Equivalent length Y-joint: 1.64 ft (0.5 m); distribution header: 3.28 ft (1 m).
(b) If the indoor unit is at a higher level than the outdoor unit, the allowable height difference is 131 ft (40 m). If the indoor unit is located at a lower level than the outdoor unit, the allowable height difference is >164 ft (50 m), request engineering support from Trane.
(c) Required for indoor units that do not have internal EEVs. Refer to the EEV kit installation guide (VRF-SVN43) for detailed information.

Table 24. Required condition (note to Table 23, p. 36)

	Condition	Example
First Y-joint to farthest indoor unit	148 ft (45 m) \leq b+c+d+e+f+g+p \leq 295 ft (90 m): branch pipes (b, c, d, e, f, g) size must be increased by 1 size	
Total length of	If the size of the pipe between the first Y-joint and the outdoor unit is not increased by 1 size, $a+(b+c+d+e+f+g) \times 2+h+i+j+k+l+m+n+p \le 3281$ ft (1000 m)	
extended pipe	If the size of the pipe between the first Y-joint and the outdoor unit is increased by 1 size, (a+b+c+d+e+f+g) x 2+h+i+j+k+l+m+n+p > 3281 ft (1000 m)	
Each Y-joint to each indoor unit	h, i, j, p ≤ 148 ft (45 m)	
	in [the distance of the outdoor unit to the farthest indoor unit] and the it and ≤148 ft (45 m), $(a+b+c+d+e+g+p) - (a+h) ≤ 148$ ft (45 m)	

Refrigerant Piping Installation Examples: Heat Recovery

Figure 21. Single and module installations with Y-joints: Heat recovery

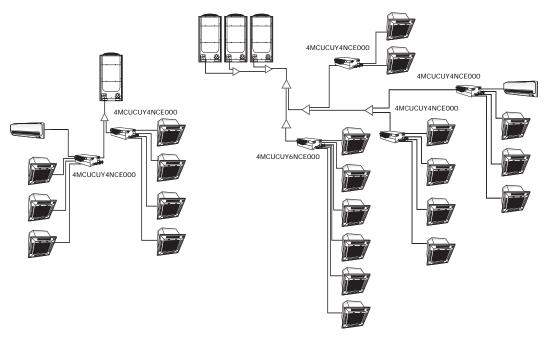
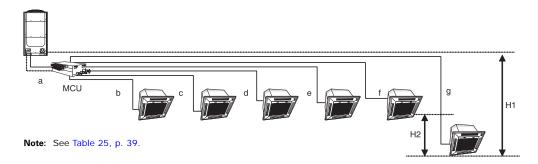



Figure 22. Single installation with MCU: Heat recovery

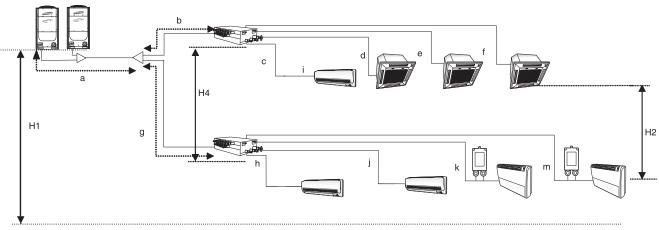


Figure 23. Module installation with MCU and Y-joint: Heat recovery

Note: See Table 25, p. 39.

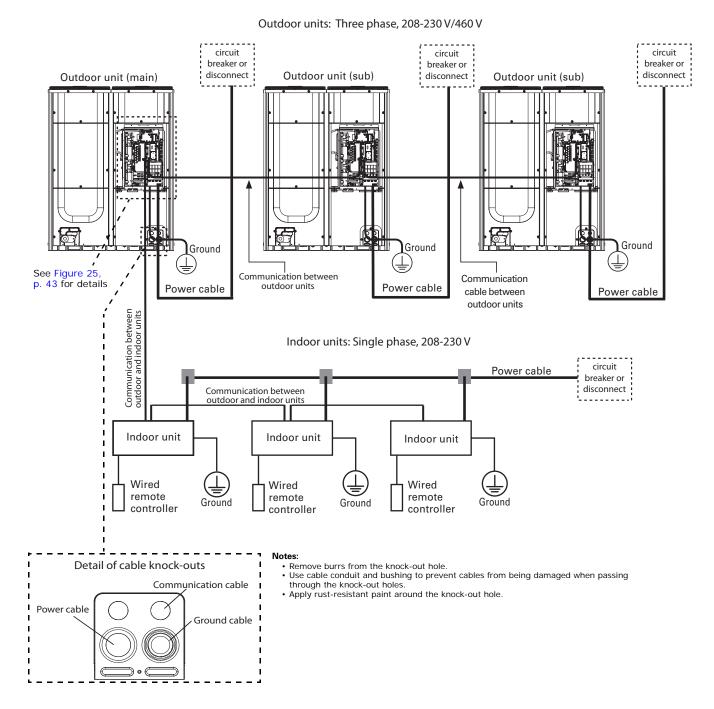
	Piping location		height differences (m)		Notes/Examples
		Piping [equivalent	656 [722] ft	MCU only	a+b+c+d+e+f+g ≤ 256 [722] ft (200 [220] m); see Figure 22, p. 38
	Outdoor unit to	length] ^(a)	(200 [220] m)	Y-joint and MCU	a+g+m ≤ 656 [722] ft (200 [220] m); Figure 23, p. 38
Maximum allowable	indoor unit	Total piping length	3281 ft (1000 m)	MCU only	a+b+c+d+e+f+g ≤ 3281 ft (1000 m); see Figure 22, p. 38
piping length			3281 11 (1000 11)	Y-joint and MCU	a+b+c+d+e+f+g+p+h+i+j+k+m+n ≤ 3281 ft (1000 m); Figure 23, p. 38
	Between	Piping length	33 ft (10 m)	r ≤ 33 ft (10 m), s	≤ 33 ft (10 m), t ≤ 33 ft (10 m)
	outdoor units (module installation)	Equivalent piping length	43 ft (13 m)	r ≤ 43 ft (13 m), s	≤ 43 ft (13 m), t ≤ 43 ft (13 m)
	Outdoor unit to indoor unit	Piping [equivalent length]	361 [131] ft (110 [40] m) ^(b)	H1 ≤ 361 [131] ft (110 [40] m)	
Maximum allowable piping	Indoor unit to indoor unit		49 ft (15 m)	H2 ≤ 49 ft (15 m)	
height difference	MCU to MCU	Piping length	49 ft (15 m)	H4 ≤ 49 ft (15 m)	
Maximum	First Y-joint to			MCU only	g ≤ 148 ft (45 m)
allowable length after Y-joint	farthest indoor unit		148 ft (45 m)	Y-joint and MCU	g+m ≤ 148 ft (45 m)
			6.6 ft (2 m) or less	4EEVEVA24SA000 4EEVEVA32SA000	For 1 indoor unit
Electronic expansion valve (EEV)	Indoor unit	Actual piping length		4EEVXDA24K132A 4EEVXDA24K200A 4EEVXDA32K200A	For 2 indoor units
kit ^(c)			66 ft (20 m) or less	4EEVXDA24K232A 4EEVXDA24K300A 4EEVXDA32K224A 4EEVXDA32K300A	For 3 indoor units

(a) Equivalent piping length—Y-joint: 1.64 ft (0.5 m); distribution header: 3.28 ft (1 m); MCU: 3.28 ft (1 m).
(b) If the indoor unit is at a higher level than outdoor unit, the allowable height difference is 131 ft (40 m). If the indoor unit is located at a lower level than the outdoor unit, the allowable height difference is 361 ft (110 m). If the height difference exceeds 164 ft (50 m), request engineering support from Trane.
(c) Required for indoor units that do not have built-in EEVs. Refer to the EEV kit installation guide (VRF-SVN43) for detailed information.

Electrical Wiring

Observe the following precautions when making electrical connections.

Hazardous Voltage!


Disconnect all electric power, including remote disconnects, before servicing. Follow proper lockout/tagout procedures to ensure that power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

NOTICE

Use Copper Conductors Only!

Unit terminals are not designed to accept other types of conductors. Failure to use copper conductors could result in equipment damage.

- Make all electrical connections in accordance with electrical codes and ordinances.
- Multi-pole circuit breaker or disconnect is required to fully isolate the unit from all power.
- Install circuit breakers/disconnects in accordance with local and national codes.
- Select the power cable in accordance with relevant local and national regulations.
- Power cable specifications are based on the following conditions: underground/ambient temperature of 86°F (30°C), single multi-conductor cables.
 - **Note:** If conditions are different from these, consult an electrical installation expert and reselect the power cable. If the length of power cable exceeds 164.04 ft (50 m), re-select the power cable considering the voltage drop.
- Use a power cable made out of incombustible material for the insulator (inner cover) and the sheath (outer cover).
- All wiring must be protected from weather and damage.
- Do not use power cable that has exposed wire.
- Do not disconnect or change the factory wiring inside the unit.
- Provide strain relief for power and communication cables.
- Unbalanced power must be maintained within 10% of supply rating among all indoor units or the unit will stop and an error code will be generated. (Significantly unbalanced power may shorten the life of the system.)
- Maintain a distance of 2 in. (50 mm) or more between power and communication cables to prevent interference.

Figure 24. Typical system installation wiring

VRF-SVN34C-EN

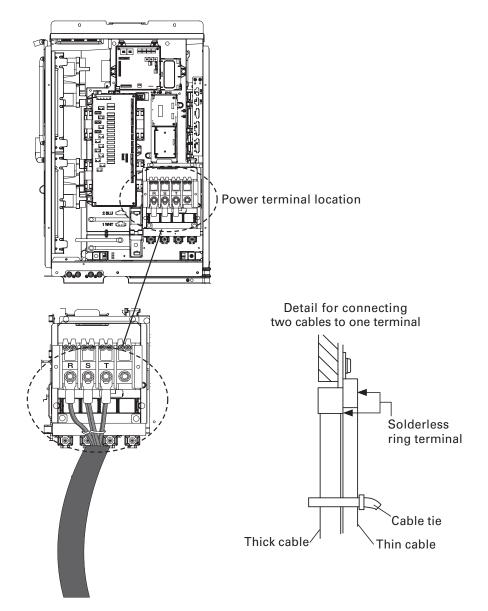
Power Wiring

Avoid Risk of Fire or Explosion!

Do not let the power cable come into contact with pipes inside the outdoor unit. If the power supply cable touches pipes, the vibrations of the compressor will be transferred to the pipes and can damage the power supply cables or pipes. The damage could result in fire or explosion, causing death or serious injury.

Follow this procedure:

- 1. Refer to Table 27 and Table 28, p. 45 for power cable and circuit breaker specifications. Refer to Table 26, p. 42 for conduit specifications.
- 2. Cut the power cable to an appropriate length and connect it to the terminals in the power supply box with a solderless ring terminal (see Figure 25, p. 43).


Screw	Tightening torque for terminal	Power cable
M4	0.9–1.1 lbf/ft (1.2–1.5 N·m)	Single-phase 208-230 V
M8	4.1–5.4 lbf/ft (5.5–7.3 N·m)	Three-phase 208-230 V/460 V power cable

- 3. If two cables are connected to one terminal, place the cables back to back with the thin cable upward and the thick cable downward, as shown in the detail in Figure 25.
- 4. Secure the cable(s) with a cable tie and provide strain relief.
- 5. Replace the cover on the terminal board.
 - **Note:** Make sure that the section of the power supply cable that has the sheath removed is inside the power supply box. If this is not possible, connect the power cable conduit to the power supply box.

Table 26. Cable conduit specifications

Name	Temper grade	Application conditions
Flexible PVC conduit	PVC	If conduit is installed indoors and not exposed to outside elements (embedded in concrete)
Class 1 flexible conduit	Galvanized steel sheet	If conduit is installed indoors but exposed to outside elements
Class 1 PVC-coated flexible conduit	Galvanized steel sheet and soft PVC compound	If conduit is installed outdoors and requires waterproofing

6. Pull the power cable through the designated knock-out at the bottom right of the outdoor unit (see Figure 24, p. 41 for details).

Figure 25. Power wiring terminal connections

su					Module 1							Module 2						Module 3						
(te			Units	RI	LA	FL	Α.	Pow	ver su	ipply	RI	A	FL	A	Pow	/er su	pply	RI	LA	FL	Α.	Pow	/er su	pply
Capacity (tons	Model	Hz	v	Comp 1	Comp 2	Fan 1	Fan 2	MCA (A)	MOP (A)	SCCR (kA)	Comp 1	Comp 2	Fan 1	Fan 2	MCA (A)	МОР (А)	SCCR (kA)	Comp 1	Comp 2	Fan 1	Fan 2	MCA (A)	МОР (А)	SCCR (kA)
6	4TV*0072B300NB	60	208/230	14.3	-	4.0		28.0	35	5	-	-	—	—	—	-	_	-	-	—	—	—	-	—
8	4TV*0096B300NB	60	208/230	13.9	13.9	3.0	3.0	37.8	50	5	-	_	—	—	—	-	-	_	-	—	—	—	-	—
10	4TV*0120B300NB	60	208/230	14.8	14.8	3.0	3.0	43.0	50	5	-	_	—	—	—	-	-	_	-	—	—	—	-	—
12	4TV*0144B300NB	60	208/230	20.7	20.7	3.0	3.0	52.6	70	5	-	-	—	—	—		-	-	-	—	—	—		—
14	4TV*0168B300NC	60	208/230	24.0	24.0	3.0	3.0	66.0	80	5	Ι	Ι	—	—	—	I		Ι	Ι	_	—	—	I	—
16	4TV*0192B300NC	60	208/230	28.0	28.0	3.0	3.0	73.0	90	5	I	I	-		-	I	I	I	I	I		Ι	I	—
18	4TV*0216B300NC	60	208/230	14.3	-	4.0		28.0	35	5	20.7	20.7	3.0	3.0	52.6	70	5					Ι		—
20	4TV*0240B300NC	60	208/230	14.3	Ι	4.0	Ι	28.0	35	5	24.0	24.0	3.0	3.0	66.0	80	5	-	-	-	-	Ι	-	-
22	4TV*0264B300NC	60	208/230	14.3	—	4.0	I	28.0	35	5	28.0	28.0	3.0	3.0	73.0	90	5	-				—	_	—
24	4TV*0288B300NC	60	208/230	20.7	20.7	3.0	3.0	52.6	70	5	20.7	20.7	3.0	3.0	52.6	70	5	-	-	-	-	Ι	-	-
26	4TV*0312B300NC	60	208/230	20.7	20.7	3.0	3.0	52.6	70	5	24.0	24.0	3.0	3.0	66.0	80	5	-	-	-	-	—	—	—
28	4TV*0336B300NC	60	208/230	24.0	24.0	3.0	3.0	66.0	80	5	24.0	24.0	3.0	3.0	66.0	80	5	-				—	_	—
30	4TV*0360B300NC	60	208/230	24.0	24.0	3.0	3.0	66.0	80	5	28.0	28.0	3.0	3.0	73.0	90	5	-	-	-	-	—	—	—
32	4TV*0384B300NC	60	208/230	28.0	28.0	3.0	3.0	73.0	90	5	28.0	28.0	3.0	3.0	73.0	90	5	_	_	-	-	—	_	—
34	4TV*0408B300NC	60	208/230	14.3	—	4.0		28.0	35	5	20.7	20.7	3.0	3.0	52.6	70	5	28.0	28.0	3.0	3.0	73.0	90	5
36	4TV*0432B300NC	60	208/230	20.7	20.7	3.0	3.0	52.6	70	5	20.7	20.7	3.0	3.0	52.6	70	5	20.7	20.7	3.0	3.0	52.6	70	5
38	4TV*0456B300NC	60	208/230	14.8	14.8	3.0	3.0	43.0	50	5	24.0	24.0	3.0	3.0	66.0	80	5	24.0	24.0	3.0	3.0	66.0	80	5
40	4TV*0480B300NC	60	208/230	20.7	20.7	3.0	3.0	52.6	70	5	24.0	24.0	3.0	3.0	66.0	80	5	24.0	24.0	3.0	3.0	66.0	80	5
42	4TV*0504B300NC	60	208/230	24.0	24.0	3.0	3.0	66.0	80	5	24.0	24.0	3.0	3.0	66.0	80	5	24.0	24.0	3.0	3.0	66.0	80	5
44	4TV*0528B300NC	60	208/230	24.0	24.0	3.0	3.0	66.0	80	5	24.0	24.0	3.0	3.0	66.0	80	5	28.0	28.0	3.0	3.0	73.0	90	5
No	tes:			•												1	1						1	·

Table 27. Circuit breaker and power cable specifications – Heat pump/heat recovery: 208–230 V

Notes:

• RLA is based on AHRI 1230 cooling standard condition (indoor temperature: 80°F (26.7°C) DB/67°F (19.46°C) WB; outdoor temperature: 95°F (35°C) DB.

• Voltage tolerance is ±10%.

Maximum allowable voltage between phases is 2%.

• Refer to module combination table for independent units information.

Abbreviations: RLA: Rated load ampere; FLA: Full load ampere; MCA: Minimum circuit amperes; MOP: Maximum overcurrent protective device (amperes), SCCR: Short circuit current rating.

(sı				Module 1								Mo	odule	e 2			Module 3							
(tor		Un	its	RI	A	FL	Α.	Pow	/er sı	pply	R	LA	FI	A	Pow	ver su	pply	RI	-A	FL	Α.	Pow	er su	pply
Capacity (tons)	Model	Hz	v	Comp 1	Comp 2	Fan 1	Fan 2	MCA (A)	MOP (A)	SCCR (kA)	Comp 1	Comp 2	Fan 1	Fan 2	MCA (A)	MOP (A)	SCCR (kA)	Comp 1	Comp 2	Fan 1	Fan 2	MCA (A)	MOP (A)	SCCR (kA)
6	4TV*0072B400NB	60	460	9.5	Ι	2.0		16.4	20	5	Ι	-	—	—		—	—	Ι	-		_	—		—
8	4TV*0096B400NB	60	460	11.5	_	1.5	1.5	19.0	25	5	-				-	-	-	_	-	_	-	Ι	_	-
10	4TV*0120B400NB	60	460	14.0	-	1.5	1.5	21.7	30	5	-	Ι		Ι			_	-	Ι	_	-	Ι	-	-
12	4TV*0144B400NB	60	460	11.4	11.4	1.5	1.5	28.7	40	5	-	-	—	—	_	—	—	-	—	—	-	—	—	-
14	4TV*0168B400NC	60	460	12.0	12.0	1.5	1.5	33.0	40	5		-	—	—		—	—		-					—
16	4TV*0192B400NC	60	460	14.5	14.5	1.5	1.5	37.0	50	5	_	_	—	—	_	_	_	_	—	_	-	_	_	-
18	4TV*0216B400NC	60	460	9.5		2.0	_	16.4	20	5	11.4	11.4	1.5	1.5	28.7	40	5		_		-	_		—
20	4TV*0240B400NC	60	460	9.5		2.0	-	16.4	20	5	12.0	12.0	1.5	1.5	33.0	40	5		-					—
22	4TV*0264B400NC	60	460	9.5	_	2.0	-	16.4	20	5	14.5	14.5	1.5	1.5	37.0	50	5	_	—	_	-	_	_	—
24	4TV*0288B400NC	60	460	11.4	11.4	1.5	1.5	28.7	40	5	11.4	11.4	1.5	1.5	28.7	40	5		_		-	_		-
26	4TV*0312B400NC	60	460	11.4	11.4	1.5	1.5	28.7	40	5	12.0	12.0	1.5	1.5	33.0	40	5		-					—
28	4TV*0336B400NC	60	460	12.0	12.0	1.5	1.5	33.0	40	5	12.0	12.0	1.5	1.5	33.0	40	5	_	—	_	-	_	_	-
30	4TV*0360B400NC	60	460	12.0	12.0	1.5	1.5	33.0	40	5	14.5	14.5	1.5	1.5	37.0	50	5	_	—	_	-	_	_	-
32	4TV*0384B400NC	60	460	14.5	14.5	1.5	1.5	37.0	50	5	14.5	14.5	1.5	1.5	37.0	50	5	-	_	_		_	_	—
34	4TV*0408B400NC	60	460	9.5	-	2.0	-	16.4	20	5	11.4	11.4	1.5	1.5	28.7	40	5	14.5	14.5	1.5	1.5	37.0	50	5
36	4TV*0432B400NC	60	460	11.4	11.4	1.5	1.5	28.7	40	5	11.4	11.4	1.5	1.5	28.7	40	5	11.4	11.4	1.5	1.5	28.7	40	5
38	4TV*0456B400NC	60	460	14.0	_	1.5	1.5	21.7	30	5	12.0	12.0	1.5	1.5	33.0	40	5	12.0	12.0	1.5	1.5	33.0	40	5
40	4TV*0480B400NC	60	460	11.4	11.4	1.5	1.5	28.7	40	5	12.0	12.0	1.5	1.5	33.0	40	5	12.0	12.0	1.5	1.5	33.0	40	5
42	4TV*0504B400NC	60	460	12.0	12.0	1.5	1.5	33.0	40	5	12.0	12.0	1.5	1.5	33.0	40	5	12.0	12.0	1.5	1.5	33.0	40	5
44	4TV*0528B400NC	60	460	12.0	12.0	1.5	1.5	33.0	40	5	12.0	12.0	1.5	1.5	33.0	40	5	14.5	14.5	1.5	1.5	37.0	50	5
No	tes:				-						-		•	•	-	•		-			·			

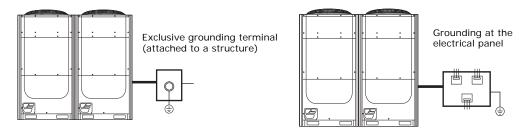
Table 28. Circuit breaker and power cable specifications-Heat pump/heat recovery: 460 V

RLA is based on AHRI 1230 cooling standard condition (indoor temperature: 80°F (26.7°C) DB/67°F (19.46°C) WB; outdoor temperature: 95°F (35°C) DB.

• Voltage tolerance is ± 10%.

Maximum allowable voltage between phases is 2%.

• Refer to module combination table for independent units information.


 Abbreviations: RLA: Rated load ampere; FLA: Full load ampere; MCA: Minimum circuit amperes; MOP: Maximum overcurrent protective device (amperes), SCCR: Short circuit current rating.

Grounding

Important: Grounding must be done by a qualified electrician.

Refer to outdoor unit grounding examples (Figure 26) and to grounding resistance requirements (Table 29).

Figure 26. Outdoor unit grounding examples

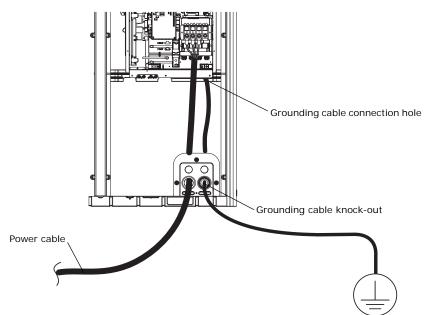


Table 29. Grounding resistance requirements

Power condition at installation site	High or average humidity	Low humidity
Voltage to ground is \leq 150 V	 If a circuit breaker is installed that disconnects the 	+ Ideally, grounding resistance should be <100 Ω and should not exceed 250 Ω .
Voltage to ground is > 150 V	circuit within 0.5 seconds, the allowable grounding resistance is 30–500 Ω .	 Ensure that the grounding resistance is <100 Ω. If a circuit breaker is installed that disconnects the circuit within 0.5 seconds, the allowable grounding resistance is 30–500 Ω.

- 1. Select rated grounding cable by referring to the outdoor unit power cable specifications (Table 27, p. 44 and Table 28, p. 45).
- 2. Connect the grounding cable to the grounding hole inside the power supply box and pull it through the designated grounding knock-out (see Figure 27 for details).

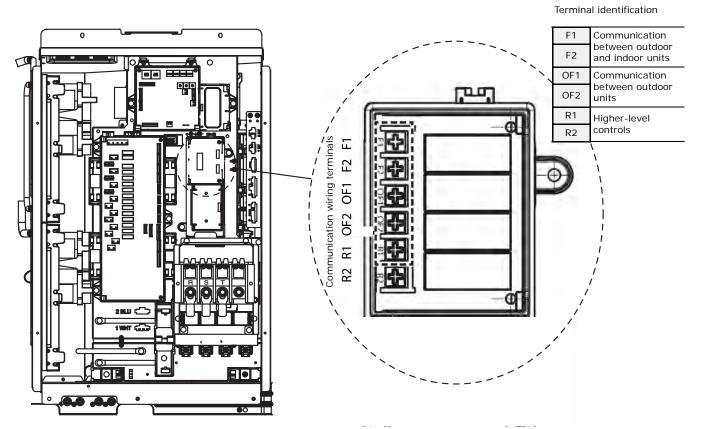
Figure 27. Grounding cable connection location

Communications Wiring

Use 18 AWG, 25 pF/ft nom., 60.7 Ω impedance, braid or foil shielded, twisted pair wire for communications wiring.

Refer to Table 26, p. 42 for conduit specifications.

Hazardous Voltage!


Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

1. Connect the communications wiring as shown in Figure 28.

Notes:

- Ensure that more than 1 in. (20 mm) of the outer sheath of the power and communication cable conduit are inside the electrical component box.
- To reduce interference, ensure that power and communication cables run in parallel or, if crossing is necessary, cross at 90 degrees.
- The communication cable between outdoor units and between indoor and outdoor units has no polarity.

Figure 28. Communications board and wiring terminals

2. To provide strain relief, secure the communications cable with a clamp in the location shown in Figure 29.

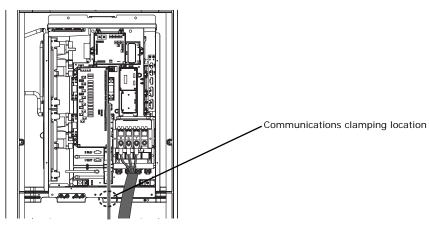


Figure 29. Communications cable clamping location

3. Pull the communications cable through the designated knock-out at the bottom right of the outdoor unit (see Figure 24, p. 41 for details).

Leak Testing Pipe Connections

Before leak testing pipe connections, read all safety precautions and notes.

Confined Space Hazards!

Do not work in confined spaces where refrigerant or other hazardous, toxic or flammable gas may be leaking. Refrigerant or other gases could displace oxygen, causing possible asphyxiation or other serious health risks. Some gases may be flammable and/or explosive. If a leak in such spaces is detected, evacuate the area immediately and contact the proper rescue or response authority. Failure to take appropriate precautions or to react properly to such potential hazards could result in death or serious injury.

A WARNING

Explosion Hazard!

Never use an open flame to detect gas leaks. It could result in an explosion. Use a leak test solution for leak testing. Failure to follow recommended safe leak test procedures could result in death or serious injury or equipment or property-only-damage.

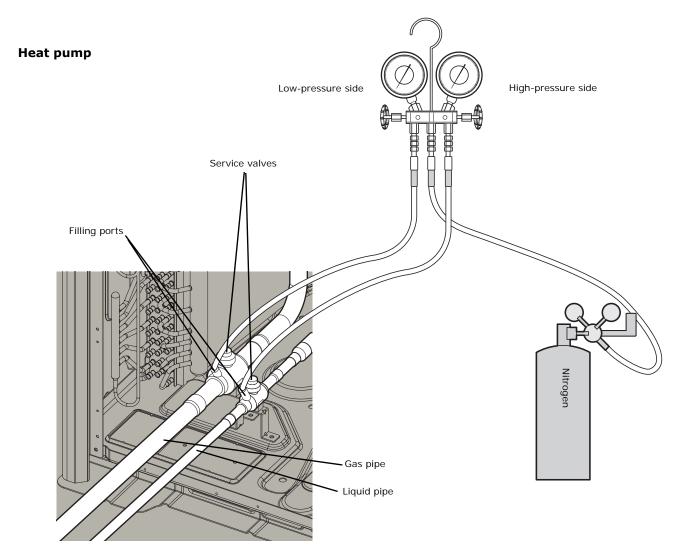
Use only dry nitrogen with a pressure regulator for pressurizing unit. Do not use acetylene, oxygen or compressed air or mixtures containing them for pressure testing. Do not use mixtures of a hydrogen containing refrigerant and air above atmospheric pressure for pressure testing as they may become flammable and could result in an explosion. Refrigerant, when used as a trace gas should only be mixed with dry nitrogen for pressurizing units. Failure to follow these recommendations could result in death or serious injury or equipment or property-only damage.

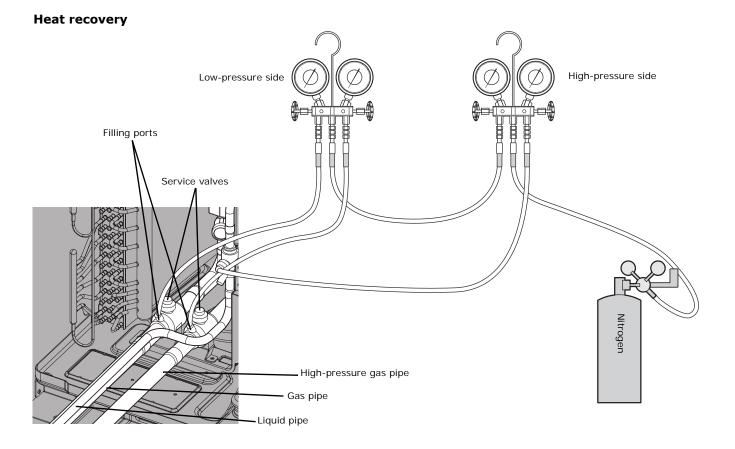
Do not exceed unit nameplate design pressures when leak testing system. Failure to follow these instructions could result in an explosion causing death or serious injury.

NOTICE

Refrigerant Pipe Damage!

When performing a leak test, use a pressure regulator to prevent an excess amount of nitrogen (over 594.6 psi [4.1 MPa]) from entering the pipes. If the pipe is filled with over the specified amount of nitrogen in a short time, pipes may be damaged.

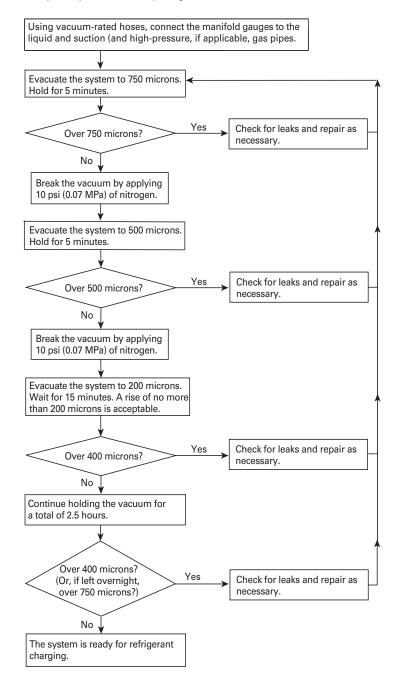

- All required pipe leak testing must be completed in accordance with national and/or local codes.
- Use R-410A refrigerant gas as a tracer for leak detection.
- Use oil-pumped dry nitrogen to develop required test pressures.
- Use tools rated for R-410A refrigerant.
- Perform the leak test with the outdoor unit service valves closed.
- Do not remove the Schrader core from the service valves.
- Leak test only one circuit at a time to minimize system exposure to potentially harmful moisture in the air.


To perform the test:

- 1. Connect the refrigerant manifold gauge hoses to the liquid side and gas side service ports on the unit, and connect the center hose to a nitrogen gas tank fitted with a pressure regulator (see Figure 30, p. 50 and Figure 31, p. 51).
- 2. Fill the lines with nitrogen as described:
 - a. To 72 psi (0.5 MPa) for 5 minutes.
 - b. Then, to 220 psi (1.5 MPa) for 5 minutes.

- c. Then, to 590 psi (4.1 MPa) for 24 hours.
- 3. If the pressure drops for any reason other than verifiable temperature fluctuations, check for leaks and repair them. Use soapy water to check for leaks; bubbles will form if joints are not tight.
- 4. Release pressure in pipelines gradually.
- 5. Repair leaks.
- 6. Repeat the previous steps until the pressure remains constant at 145 psi (1.0 MPa) for at least 15 minutes.
- 7. When testing is finished, remove hoses from service ports.

Figure 30. Leak testing pipe connections: Heat pump


Figure 31. Leak testing pipe connections: Heat recovery

VRF-SVN34C-EN

Vacuum Drying

After performing a leak test, use a vacuum pump to triple evacuate the system as described below: *Notes:*

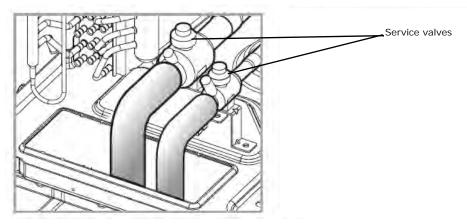
- Use a vacuum pump with a check valve to prevent pump oil from flowing backward while the vacuum pump is closed.
- Completely close the liquid-gas side service valve of the outdoor unit.

Insulating Refrigerant Pipes

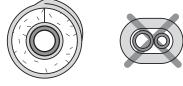
After determining that there are no leaks in the refrigerant pipes, insulate them as described:

1. Use Table 30 to select the insulation thickness according to pipe size and humidity conditions.

Table 30. Pipe insulation selector

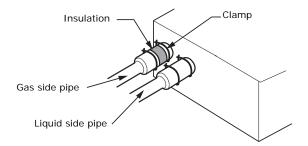

		Insula	ation Type				
		Standard conditions 86°F (30°C) <85%	High humidity conditions ^(a) 86°F (30°C) ≥ 85%				
Pipe	Pipe size in. (mm)	EPDM or NBR (in. (mm)					
	1/4 (6.35) – 3/8 (9.52)	3/8 (9)	3/8 (9)				
Liquid pipe	1/2 (12.70) – 2 (50.80)	1/2 (13)	1/2 (13)				
	1/4 (6.35)	1/2 (13)	3/4 (19)				
Cara mina (b)	3/8 (9.52) – 1 (25.40)	2/4 (10)	1.0 (25)				
Gas pipe ^(b)	1-1/8 (28.58) - 1-3/4 (44.45)	- 3/4 (19)	1-1/4 (32)				
	2 (50.80)	1.0 (25)	1-1/2 (38)				

(a) When installing insulation in any of the following environments, use insulation required for high humidity conditions: Buildings with close proximity to bodies of water or hot springs or on the side of a hill in which the building is partly covered by earth; ceilings frequently exposed to moisture such as in restaurants, saunas, swimming pools, and corridors of dormitories or studios near a frequently-used outdoor exit; buildings with no ventilation system.


(b) Internal temperature of gas pipe is higher than 248°F (120°C).

2. Wrap insulation around the entire surface of each pipe, including the refrigerant pipes from the indoor unit to the service valves inside the outdoor unit, the Y-joints, distribution header, and connection points on each pipe.

Note: For details on insulating Y-joints and distribution headers, refer to the branch joint installation manual (VRF-SVN41).


• Do not wrap the gas and liquid refrigerant pipes together.

- Overlap insulation to avoid gaps.
- Avoid compressing the insulation as much as possible.
- Be sure there are no cracks or deformities in the insulation at bends in pipes.

Insulating Refrigerant Pipes

- If necessary double the insulation to prevent condensation from forming in warm or humid areas.
- 3. Clamp insulation tightly to the pipes.

4. Cut off excess insulation.

Refrigerant

After successful leak testing and vacuum drying, charge the system with refrigerant as explained in this section.

Calculating the Refrigerant

The initial refrigerant quantity (given in Table 31, p. 55) is charged into the unit at the factory. Calculate the total amount of additional refrigerant using Table 32, p. 55 through Table 34, p. 56.

Table 31. Initial refrigerant quantity for each outdoor unit model

Model	4TV**072	4TV**096	4TV**120	4TV**144	4TV**168	4TV**192					
Initial refrigerant quantity: lb (kg)	12.1 (5.5)	16.3 (7.4)	16.3 (7.4)	19.2 (8.7)	24.3 (11.0)	24.3 (11.0)					
Note: Add the initial refrigerant quantity sho	ote: Add the initial refrigerant quantity shown in this table to the refrigerant calculated in Table 32 through Table 34, p. 56.										

Table 32. Refrigerant quantity according to liquid pipe diameter and length (a)

Diameter of liquid pipe: in. (mm)	1/4 (6.35)	3/8 (9.52)	1/2 (12.7)	5/8 (15.88)	3/4 (19.05)	7/8 (22.23)	1 (25.4)
Additional refrigerant quantity: lb/ft (kg/m)	0.013 (0.02)	0.040 (0.06)	0.084 (0.125)	0.121 (0.18)	0.181 (0.27)	0.235 (0.35)	0.356 (0.53)

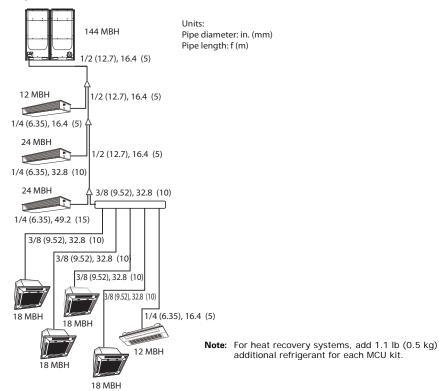
Note: For an indoor unit with a factory-installed EEV, the quantity of refrigerant in addition to the quantity based on the unit capacity (Table 31) is 0.0067 lb/ft regardless of the pipe size.

Table 33. Refrigerant quantity for each indoor unit (b)

								Capacit	y (MBH)						
	7.5	9/9.5	12	15	18	20	24	27	30	36	42	48	60	72	76.8	96
Model							Refrig	erant qu	antity:	lb (kg)						
1-way cassette (4TVE00**B100NB)	0.55 (0.25)	0.55 (0.25)	0.55 (0.25)													
Mini 4-way cassette (4TVB00**B100NB)		0.82 (0.37)	0.82 (0.37)		0.82 (0.37)	0.82 (0.37)										
4-way cassette (4TVC00**B100NB)		0.99 (0.45)	0.99 (0.45)		0.99 (0.45)		0.99 (0.45)		1.52 (0.69)	1.52 (0.69)		1.52 (0.69)				
Slim duct (optional condensate pump) (4TVL00**B100NB)	0.53 (0.24)	0.53 (0.24)	0.53 (0.24)		0.99 (0.45)		0.99 (0.45)		0.99 (0.45)	0.99 (0.45)		1.37 (0.62)				
MSP duct (standard condensate pump) (4TVD00**C100NA)	0.81 (0.37)	0.81 (0.37)	0.81 (0.37)	1.19 (0.54)	1.19 (0.54)		1.04 (0.47)	1.04 (0.47)	1.04 (0.47)	1.50 (0.68)		1.50 (0.68)				
MSP duct (optional condensate pump) (4TVD00**B100NB)					0.62 (0.28)		0.62 (0.28)		1.19 (0.54)	1.19 (0.54)		1.50 (0.68)				
HSP duct (optional condensate pump) (4TVA00**B100NB)										1.50 (0.68)		1.50 (0.68)			2.60 (1.18)	2.60 (1.18)
High-wall with EEV (4TVW00**B100NC)	0.53 (0.24)	0.53 (0.24)	0.53 (0.24)		0.79 (0.36)	0.79 (0.36)	0.79 (0.36)									
Convertible ceiling/floor (4TVX00**B100NB)					0.86 (0.39)		0.86 (0.39)									
Convertible AHU (4TVM00**B100NB)							2.10 (0.95)		2.10 (0.95)	2.10 (0.95)	2.70 (1.22)	2.70 (1.22)	3.50 (1.58)			
Dedicated outside air system (4TVN00**B300NB)														2.60 (1.18)		2.60 (1.18)
Notes:																•

Additional refrigerant charging of MCU is 1.1 lb (0.5 kg) for every MCU kit.
 For an indoor unit with an AHU kit, add 0.04 lb (0.018 kg) of refrigerant for 1 MBH capacity of the AHU kit.

	Liquid pipe (a) diameter	Pipe length (ft)	Refrigerant amount (lb/ft) from Table 32, p. 55)	Additional refrigerant amount (lb)	Total additional refrigerant (lb)
	in. (mm)	(1)	(2)	(1) x (2)	Σ(1) x (2)
ſ	1/4 (6.35)	114.8	0.013	1.49	
Ī	3/8 (9.52)	164.0	0.040	6.56	12.19
	1/2 (12.70)	49.2	0.084	4.13	


Table 34. Calculation example for refrigerant amount additional to basic unit amount

Indoor unit (b)	Number of units	Refrigerant amount (lb/each) from Table 33, p. 55)	Additional refrigerant amount (lb)	Total additional refrigerant (lb)
model	(1)	(2)	(1) x (2)	Σ(1)x(2)
4-way cassette (4TVC0018B100NB)	4	0.99	3.96	
Slim duct (4TVL0012B100NB)	1	0.53	0.53	7.02
Slim duct (4TVL0024B100NB)	2	0.99	1.98	7.02
1-way cassette (4TVE00B100NB)	1	0.55	0.55	

Notes:

 The total amount of refrigerant in the system must not exceed 220 lb (100 kg). If the refrigerant weight exceeds this amount, separate the modules into smaller modules (or units) so that the maximum weight is not exceeded. For example, for 4TV*144***** separate the modules into smaller includes (or diffs) so that the maintain weight is not exceeded, for exceeded, for example, for 414 144 20, the basic amount of refrigerant is 19.2 lb (8.7 kg). Therefore, the total amount of additional refrigerant (a) + (b) should not exceed 200.8 lb (91.1 kg).
For each MCU kit, additional refrigerant charging is 1.1 lb (0.5 kg).
For an indoor unit with an AHU kit, add 0.04 lb (0.018 kg) of refrigerant for 1 MBH capacity of the AHU kit.

Example:

Charging Refrigerant

After calculating the correct amount of refrigerant needed by the system (see "Calculating the Refrigerant" p. 55), charge the system as described in the following procedure and in Figure 32:

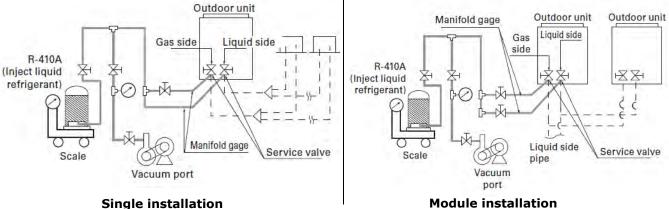
Hazard of Explosion and Deadly Gases!

Do not heat the refrigerant container to speed up the charging process. An explosion could occur, resulting in death or serious injury.

NOTICE

Risk of Unit Malfunction!

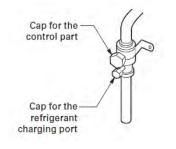
Do not leave the front panel open while charging refrigerant. If the front panel is open, the amount charged into the unit will be incorrect.


NOTICE

Unit Component Damage!

Open the gas side and liquid side service valves completely after charging the refrigerant. If you operate the unit with the service valves closed, the unit may be damaged.

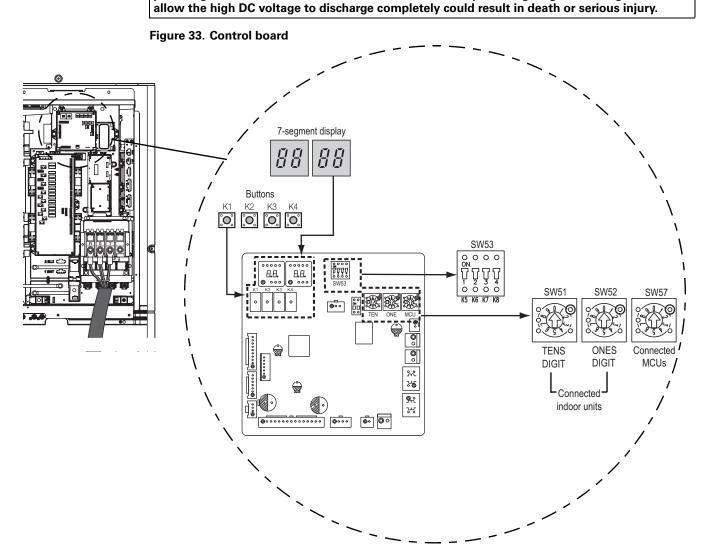
- 1. Attach the liquid manifold hose to the liquid side service port and open the manifold gauge valve.
- 2. Add the liquid refrigerant, making sure the refrigerant bottle is held in an upright position. Use a scale to determine that the correct amount has been added.
- 3. Close the refrigerant container immediately after adding the refrigerant.
- 4. If you are unable to add all of the refrigerant needed into the liquid side, close the liquid side service port and remove the liquid manifold hose.
- 5. Attach the gas manifold hose to the gas side service port and open the manifold gauge valve.


Figure 32. Charging additional refrigerant

Module installation

- 6. Press K2 once to initiate refrigerant charging in cooling mode.
- 7. To determine if the amount of refrigerant added is correct, use the automatic refrigerant function (see "Refrigerant Amount Detection Operation" p. 70).

- 8. After charging the refrigerant, close both caps as shown in the figure below.
 - Tightening torque for refrigerant port cap: 7.4–8.9 lbf-ft (10–12 N-m)
 - Tightening torque for control cap: 14.8–18.4 lbf-ft (20–25 N-m)
 - Opening/closing torque for the valve (> 3/4 in. [19.05 mm]): 7.4 lbf-ft (10 N-m)


Control System

The control board contains a 7-segment display, a DIP switch, three rotary switches, and four buttons, as shown in Figure 33. Their functions are explained in this section.

Hazardous Voltage!

Before making contact with the inverter circuit board, wait for at least 15 minutes after powering down the outdoor unit to allow the unit to fully discharge high DC voltage. Failure to

A WARNING

Monitoring System Power and Communication Status

The 7-segment display indicates system power and communication status.

Table 35. 7-segment display

Event	Digit 1	Digit 2	Digit 3	Digit 4
Power up ^(a)	"8"	"8"	"8"	"8"
Establishing communication between outdoor and indoor units	"A"	"d"	Number of connected indoor units	
Transmit/receive (normal operation)	Indoor unit: "A" MCU ^(b) : "C"	Indoor unit: "0" MCU: "1"	Unit address (c	lecimal number)

(a) 7-segment display example showing power-up is shown in Figure 33.(b) Mode change unit.

System Configuration

The outdoor unit control board contains one DIP switch and three rotary switches (Figure 34). Use them to configure the system as described in Table 36.

Figure 34. Switches on outdoor unit control board

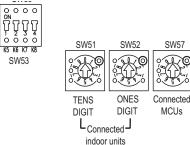
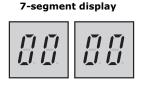


Table 36. System configuration using control board switches


Switch ^(a)	Function description and notes									
SW51/	Use to set total number of installed indoor units		Set at main outdoor unit only.							
SW52			Note: For example, if 12 indoor units are installed, SW51: 1, SW52: 2.							
SW57	Use to set total number of	of connected MCUs	Set at main outdoor unit only.							
3007		of connected mcos	Note: For example, if 3 MCUs are installed, SW57: "3". If 10 MCUs are installed, SW57: "A".							
	К5	Off	Not used. Default: Off							
			Enables maximum capacity restriction for cooling operation.							
	К6	On	Use to restrict excessive capacity increase when operating indoor units with smal capacity.							
		Off	Disables maximum capacity restriction for cooling operation.							
C)4/5 2	К7	On	Use to set outdoor unit address: No. 1 (main unit) ^(b)							
SW53	К8	On								
	К7	On	Use to set outdoor unit address: No. 2 (sub-unit 1)							
	K8	Off								
	К7	Off	Use to set outdoor unit address: No. 3 (sub-unit 2)							
	K8	On								
	К7	Off	Not used							
	K8	Off								

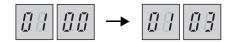
(a) For illustration of switches, refer to Figure 34.
 (b) For module installations, one outdoor unit needs to be designated as the main unit. The remaining outdoor units must be designated as sub-units.

The control board has four buttons, K1–K4, and a 7-segment display for configuring system options.

Figure 35. Buttons K1–K4 and 7-segment display on the outdoor unit control board

To set options:

 When the unit is not operating, press and hold K2 (5 seconds) to enter the option setting mode. The 7-segment display will appear as shown. (If compressor cut-off is enabled, digit 4 will be "1" or "2".)


2. To select a different option, press K1 repeatedly until the number representing the selected option appears for digits 1 and 2. (See the "Digit 1" and "Digit 2" columns in Table 37, p. 62 for the list of option numbers.) For example, choose "01" on the main outdoor unit to select the cooling capacity correction option.

Digits 1 and 2 change to the number representing the selected option.

3. To change the value for the option selected in Step 2, press K2 repeatedly for 1 second until the number representing the selected value appears for digits 3 and 4. (See the "Digit 3" and "Digit 4" columns in Table 37, p. 62 for the list of values.)

For example, if you select "01" for digits 1 and 2, and "04" for digits 3 and 4, the cooling capacity correction selection is $50-53.6^{\circ}F$ ($10-12^{\circ}C$).

Digits 3 and 4 change to the number representing the selected value.

- 4. To save the value you have selected in Step 3, press and hold the K2 for 5 seconds. The 7segment display will blink as it enters tracking mode. The selected value will be saved when the display returns to normal.
 - **Note:** To the previous value instead of saving the selection, press and hold K1 (5 seconds). To restore the factory default, press and hold K4 while in the option setting mode.

Option	Outdoor unit	Digit 1	Digit 2	Digit 3	Digit 4	Value	Comments			
Emergency				0	0	Disabled (factory default)				
operation for	Single	0	0	0	1	Compressor 1: malfunction state	E560 will occur if all compressors are set to malfunction state.			
compressor malfunction				0	2	Compressor 2: malfunction state				
				0	0	44.6-48.2 (7-9): factory default				
				0	1	41-44.6 (5-7)	-			
				0	2	48.2-51.8 (9-11)	Targeted evaporating temperature: °F(°C).			
Cooling capacity correction	Main	0	1	0	3	50-53.6 (10-12)	When low temperature value is set, indoor unit			
confection				0	4	51.8-55.6 (11-13)	discharged air temperature will decrease.			
				0	5	53.6-57.2 (12-14)				
				0	6	55.4-59 (13-15)	-			
				0	0	435.1 (3.0): factory default				
				0	1	362.6 (2.5)	-			
				0	2	377.1 (2.6)				
				0	3	391.6 (2.7)	Targeted high pressure: psi (MPa).			
Heating capacity correction	Main	0	2	0	4	406.1 (2.8)	When low pressure value is set, discharged air			
correction				0	5	420.6 (2.9)	temperature of the indoor unit will decrease.			
				0	6	449.6 (3.1)				
				0	7	464.1 (3.2)				
				0	8	478.6 (3.3)				
				0	0	100%: factory default				
							-	0	1	95%
					0	2	90%			
				0	3	85%				
				0	4	80%				
Current restriction	C: 1			0	5	75%	Enabling this setting may decrease cooling and			
rate	Single	0	3	0	6	70%	heating performance.			
				0	7	65%				
				0	8	60%				
				0	9	55%				
				1	0	50%				
				1	1	No restriction				
Oil collecting		_		0	0	Factory default				
interval	Main	0	4	0	1	Shortens interval by 1/2	-			
T				0	0	Factory default				
Temperature for triggering defrost operation	Main	0	5	0	1	Enable when installation is in a humid area such as near a river or lake				
Outdoor welt for				0	0	Factory default				
Outdoor unit fan speed correction	Single	0	6	0	1	Increase fan speed to maximum value				

Table 37. System configuration using K1, K2, and the 7-segment display

Option	Outdoor unit	Digit 1	Digit 2	Digit 3	Digit 4	Value	Comments	
				0	0	Disabled (factory default)		
Night-time silent	Main	0	7	0	1	Level 1		
mode	Wall	0	,	0	2	Level 2		
				0	3	Level 3		
				0	0	Disabled (factory default)		
				0	1	Case 1: height difference type 1 (indoor unit is lower than outdoor unit)	When the outdoor unit is 131.23–262.47 ft (40– 80 m) above the indoor unit.	
High-headcondition setting	Main	0	8	0	2	Case 2: height difference type 1 (indoor unit is lower than outdoor unit)	When the outdoor unit is more than 262.47 ft. (80 m) above the indoor unit.	
				0	3	Height difference type 2 (outdoor unit is lower than indoor unit)	When the indoor unit is more than 98.43 ft (30 m) above the outdoor unit.	
			9	0	0	Disabled (factory default)	When the equivalent length of the farthest	
Long piping	Main	0		0	1	Level 1	indoor unit from the outdoor unit is between 328.08–557.74 (100–170 m).	
condition ^(a)				0	2	Level 2	When equivalent length of farthest indoor unit from the outdoor unit is over 557.74 ft (170 m).	
Energy saving		_	0	0	0	Disabled (factory default)	If enabled, energy saving mode triggers	
mode	Main	1	0	0	1	Enabled	when the room temperature reaches setpoint while operating in heating mode.	
				0	0	Disabled (factory default)	If enabled, continuous heating operation is	
Rotation defrost	Main	1	1	0	1	Enabled	possible but heating performance will decrease during rotation defrost operation.	
Expand operational				0	0	Disabled (factory default)	If enabled, continuous cooling operation is	
temperature range for cooling operation ^(b)	Main	1	2	0	1	Enabled	possible even in low temperature condition down to 5°F (-15°C), but MCU noise will increase.	
Channel address	Main	1	3	А	U	Automatic setting (factory default)	Used for centralized control.	
	Wall	,	3	0–	15	Manual setting for channel: 0–15		
Snow		-		0	0	Enabled (factory default)	If enabled, the fan may rotate when the unit	
accumulation prevention control	Main	1	4	0	1	Disabled	is not operating.	

Table 37. System configuration using K1, K2, and the 7-segment display (continued)

(a) Enabling this setting is unnecessary if high-head condition is set. (b) Heat recovery only.

Initiating System Operations

Buttons K1 and K2 are also used to initiate system operations. The 7-segment display responds as shown in the last column of the following tables.

Table 38. Button K1

Number of times button K1 is pressed	Operation	7-segment display
1 (hold for 5 seconds)	Test operation	K - K- Blank - Blank
1	Refrigerant charging in heating mode	K - 1 - Blank - Blank
2	Test operation in heating mode	K - 2 - Blank - Blank
3	Pump out in heating mode (Outdoor unit address 1)	K - 3 - Blank - 1
4	Pump out in heating mode (Outdoor unit address 2)	K - 3 - Blank - 2
5	Pump out in heating mode (Outdoor unit address 3)	K - 3 - Blank - 3
6	Pump out in heating mode (Outdoor unit address 4)	K - 3 - Blank - 4
7	Vacuuming (Outdoor unit address 1)	K - 4 - Blank - 1
8	Vacuuming (Outdoor unit address 2)	K - 4 - Blank - 2
9	Vacuuming (Outdoor unit address 3)	K - 4 - Blank - 3
10	Vacuuming (Outdoor unit address 4)	K - 4- Blank - 4
11	Vacuuming (All)	K - 4- Blank - A
12	End operation	—

Table 39. Button K2

Number of times button K2 is pressed	Operation	7-segment display		
1	Refrigerant charging in cooling mode	K - 5 - Blank - Blank		
2	Test operation in cooling mode	K - 6 - Blank - Blank		
3	Pump down all units in cooling mode	K - 7 - Blank - Blank		
4	Pipe inspection (heat pump: test operation)	K - 8 - Blank - Blank		
5	Checking the amount of refrigerant	K - 9 - X - X (last digits may differ depending on status)		
6	Discharge mode ^(a)	K - A - Blank - Blank		
7	Forced defrost	K - B - Blank - Blank		
8	Forced oil collection	K - C - Blank - Blank		
9	Inverter check compressor 1 ^(b)	K - D - Blank - Blank		
10	Inverter check for compressor 2 ^(b)	K - E - Blank - Blank		
11	Inverter check for fan 1 ^(b)	K - F - Blank - Blank		
12	Inverter check for fan 2 ^(b)	K - G - Blank - Blank		
13	End operation	—		

(a) Discharge mode may not operate normally if an error code occurs. If an E464 or E364 error occurs, do not use the discharge

mode because the power element may be damaged.(b) If button K2 is pressed the specified number of times and the inverter check is not successful, an error code will appear on the 7-segment display.

Button K3 is used to initialize operation.

Table 40. Button K3

ti	Number of mes button K3 is pressed	Operation	7-segment display
	1	Initialize (reset) operation	Same as power up: "8888"

Monitoring System Settings and Software Versions

Button K4 is used to monitor system settings and software versions.

Table	41.	Button	К4

Number of			7-segment display
times button K4 is pressed	Description	Digit 1	Digits 2, 3, 4
-	4TV*0072***** (6 ton)	_	Off, 0, 8
	4TV*0096***** (8 ton)		Off, 1, 0
	4TV*0120***** (10 ton)	_	Off, 1, 2
1	4TV*0144***** (12 ton)	1	Off, 1, 4
	4TV*0168***** (14 ton)		Off, 1, 8
	4TV*0192***** (16 ton)		Off, 2, 0
2	Command frequency of the compressor 1	2	120 Hz→ 1, 2, 0
3	Command frequency of the compressor 2	3	120 Hz → 1, 2, 0
4	High pressure	4	220.46 psi (1.52 MPa) → 1, 5, 2
5	Low pressure	5	62.37 psi (0.43 MPa) → 0, 4, 3
6	Discharge temperature of COMP1	6	188.6°F (87°C)→0, 8, 7
7	Discharge temperature of COMP2	7	188.6°F (87°C)→0, 8, 7
8	IPM temperature of COMP1	8	188.6°F (87°C)→0, 8, 7
9	IPM temperature of COMP2	9	188.6°F (87°C) →0, 8, 7
10	CT sensor value of COMP1	А	2 A→0, 2, 0
11	CT sensor value of COMP2	В	2 A→0, 2, 0
12	Suction temperature	С	28.4°F (-2°C) → -, 0, 2
13	COND Out temperature	D	37.4°F (3°C) → 0, 0, 3
14	Temperature of liquid pipe	E	86°F (30°C)→0, 3, 0
15	TOP temperature of COMP1	F	176°F (80°C)→0, 8, 0
16	TOP temperature of COMP2	G	176°F (80°C)→0, 8, 0
17	Outdoor temperature	Н	44.6°F (7°C)→0, 0, 7
18	EVI inlet temperature	I	59°F (15°C)→0, 1, 5
19	EVI outlet temperature	J	77°F (25°C)→0, 2, 5
20	Main EEV1 step	К	2000 steps → 2, 0, 0
21	Main EEV2 step	L	2000 steps \rightarrow 2, 0, 0
22	EVI EEV step	М	300 steps → 3, 0, 0
23	HR EEV step	N	300 steps → 3, 0, 0
24	Fan step (SSR or BLDC)	0	13 steps \rightarrow 0, 1, 3
25	Current frequency of COMP1	Р	120 Hz → 1,2,0
26	Current frequency of COMP2	Q	120 Hz → 1,2,0

Table 41.	Button K4	(continued)
-----------	-----------	-------------

Number of		7-segment display	
times button K4 is pressed	Description	Digit 1	Digits 2, 3, 4
27	Suction 2 temperature (HR)	R	28.4°F (-2°C) → -, 0, 2
28	Master indoor unit address	S	If master indoor unit is not selected \rightarrow Blank, N, D If indoor unit No. 1 is selected as master indoor unit \rightarrow 0, 0, 1

Table 42. Button K4 (pressed and held for 3 seconds)

Number of times	r of times 7-segment display: to		t display: tog	ggles between (1) and (2)	
K4 is pressed and held 3 seconds	Software version/ Unit address	Device (1)	Version (2): examples		ples
1	Main circuit board version	"MAIN"		"1412"	
2	Hub circuit board version	"HUB"	"1412"		
3	Inverter 1 circuit board version	"INV1"	"1412"		
4	Inverter 2 circuit board version	"INV2"	"1412"		
5	Fan 1 version	"FAN1"	"1412"		
6	Fan 2 version	"FAN2"	"1412"		
7	EEP version	"EEP"	"1412"		
			Digit 1	Digit 2	Digit 3, 4
		A	ddress examp	le	
8(a)	Automatically assigned unit addresses	"AUTO"	Indoor unit: "A" MCU: "C"	Indoor unit: "0" MCU: "1"	"07"
9(a)	Manually assigned unit addresses	"MANU"	Indoor unit: "A"	Indoor unit: "0"	"15"

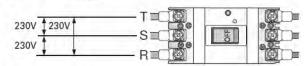
(a) Toggles between indoor unit and MCU.

Pre-Start Checks

After installation and before the test operation is conducted, perform the following pre-start checks:

NOTICE

Avoid Damage to the Communication Circuit!


Do not measure the communication terminal with an insulation tester. Doing so will damage the communication circuit.

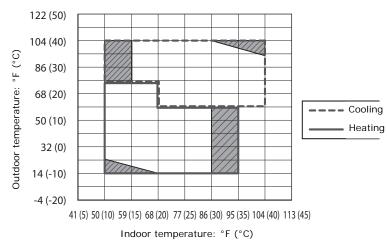
- 1. Ensure that the power and communication cables of the indoor and outdoor units are properly connected.
- Before supplying power, use a 500 Vdc (4TV*****B400NB) or 600 Vdc (4TV****B300NB) insulation resistance tester to measure the power terminal (3 phase: R, S, T) and the outdoor unit grounding. The resistance measurement should be over 30 MΩ.
- 3. Before supplying the power, use a voltmeter and phase tester to check the voltage and the phase between wires (R-S, S-T, T-R): 460 V (TV*****B400NB) or 230 V (4TV*****B300NB).

	T-TRO	0	
460V \$ 460V		0	005
1601	S⊒()@	OF	
4000	—— R⊐⊂ 🕲 🗍	-	

[4TV****B300NB]

- 4. Ensure that the indoor units are connected.
- 5. The protection system cuts power to the PCB for overvoltage when N phase is cross-wired to the R, S, and T terminals. Check the power connection from N phase if the PCB is not turned on.
- 6. Check for a short-circuit between the communication terminal and ground.
- 7. Ensure that the pre-start checklist (Table 43) has been completed.

Table 43. Pre-start checklist


Installation	Outdoor unit	 Have you checked the external surface and the inside of the outdoor unit for damage? Is there any possibility of short circuit due to the heat produced by an outdoor unit? Is the place well-ventilated and meets recommended requirements for clearances and service? Is the outdoor unit installed securely to withstand the external force?
	Indoor unit	 Have you checked the external surface and the inside of the indoor unit? Is there enough space for service? Have you ensured that the center of the indoor unit is installed horizontally and is level?
Refrigerant pipe		 Have you selected the correct pipes? Are the liquid and gas valve open? Is the total number of connected indoor units within the allowable range? Are the length and the height difference between the refrigerant pipes within the allowable range? Are the Y-joints properly installed? Has the connection of liquid and gas pipes been correctly performed? Have you selected correct insulator for pipes and insulated them correctly? Is the pipe or connection part properly insulated? Is the quantity of the additional refrigerant correctly weighed in? (You must record the amount of additional refrigerant charging on the service record paper placed outside the outdoor unit.)

Electrical	 Are the power cable and communication cable tightened firmly on the terminal board within the rated torque recommendations? Have you checked for cross connection of the power and communication cables? Have the outdoor unit been properly grounded?? Is shielded cable used for the communication cable? Is the wire length within the recommended limit? Is the wiring route correct?
Setting address	 Are the address of the indoor and outdoor units properly set? Are the address of the indoor and outdoor units properly set (when using multiple remote controllers)?
Option	Ensure that the isolation frame is correctly installed.

Table 43. Pre-start checklist

Test Operation

Perform the test operation after all pre-start checks have been completed (See "Pre-Start Checks" p. 67) and within the following temperature conditions:

Notes:

· During the test operation, cooling/heating modes are selected automatically.

- In the temperature range marked with hashed lines, system protection control may trigger during operation. (If this occurs, the test operation may be difficult to judge correctly.
- When the temperature is outside of the guaranteed range, test operation accuracy of may decrease to the borderline area shown in the graph.

AWARNING

Hazardous Voltage, Rotating Components!

Do not operate the product with the panel or duct outlet protection net off. There is risk of personal injury from parts that rotate or contain high voltage.

Risk of Burn or Frostbite!

Refrigerant pipe may be hot or cold during or right after the operation depending on the status of the refrigerant which flows through the refrigerant pipe, compressor, and other parts of the refrigerant cycle. Do not touch the refrigerant pipe during or right after the operation to avoid getting burned or frostbit.

NOTICE

Avoid Unit Damage!

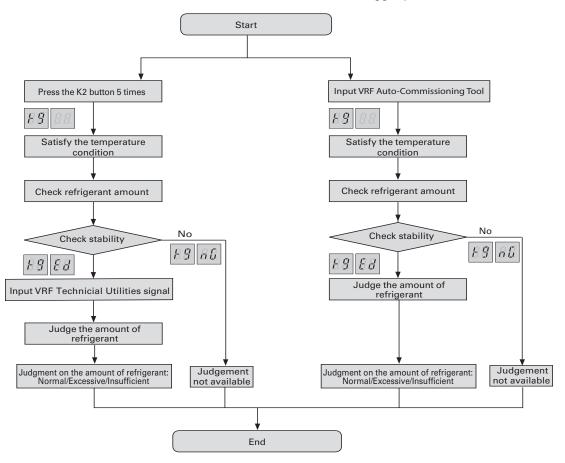
Wait at least 5 minutes before turning off the main power after the inspection test is finished. If you do not, water leakage or other problems may occur.

Wait at least 6 hours after power is supplied to the outdoor unit before operating it to allow time for the crank case heater to pre-heat. If the crank case heater is not pre-heated before operation, unit parts are at risk of being seriously damaged.

1. Provide power to the outdoor unit at least 6 hours before operating it.

Notes: When power is supplied to the outdoor unit, it will check for and verify communications with the indoor units.

- 2. Ensure that the front of the outdoor unit is closed.
- 3. Press and hold button K1 for 5 seconds to run the test operation (see Table 38, p. 64.)
 - While the test operation is running and after the communication check, **UP (UnPrepared)** appears on the digital display and the compressor is restricted from operating. The display will clear automatically when the test operation is completed.
 - The test operation may proceed from 20 minutes to maximum 2 hours depending on the operating status.
 - During the test operation, noise may occur due to valve inspection. (Examine the unit if abnormal noise continually occurs.)
- If error codes E503, E505, or E506 occur during the test operation, refer to "Error code E503" p. 71 or "Error code E505 and E506" p. 71. If any other errors occur or if an inspection is needed, refer to the service manual.
- 5. When the test operation ends, use VRF Enterprise Management Software or VRF Auto Commissioning Tool to issue a test results report. If any items in the report are marked with an "inspection required" sign, refer to the service manual for information on correcting the items and run the test operation again.
- 6. Ensure the following:
 - The system has the correct refrigerant amount (see "Refrigerant Amount Detection Operation" p. 70) after the unit has been operating in cooling mode for at least 30 minutes
 - Cooling/heating operation runs normally.
 - Air flow direction and fan speed of indoor units runs normally.
 - There are no abnormal operating noises from indoor or outdoor units.
 - During cooling operation, the indoor units drain properly.
- 7. Use VRF Enterprise Management Software to check operating status details.
- 8. Explain to the user how to use the indoor unit, and leave indoor unit manual with the user for their reference.

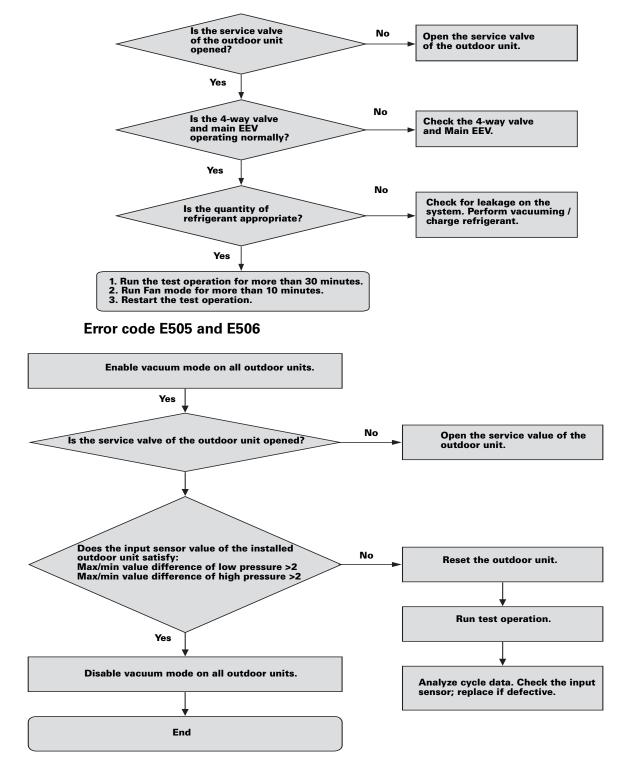

Refrigerant Amount Detection Operation

Perform the refrigerant amount detection operation only under after the unit has been operating in cooling mode for at least 30 minutes

If the unit operation cycle is unstable, the refrigerant detection operation may end before it is completed.

The refrigerant detection operation result may be inaccurate if

- If the refrigerant detection operation is run after the unit has been shut down for a long period of time.
- If the unit installation environment causes the unit to trigger protection controls.



After the refrigerant detection operation is complete, take the following actions:

- If the amount of refrigerant is excessive, discharge 5% of the detected amount and restart the refrigerant amount detection operation.
- If the amount of refrigerant is insufficient, add 5% of the detected amount and restart the refrigerant amount detection operation.
- If the degree of supercooling is insufficient, add 10% of the detected amount of refrigerant and restart the refrigerant amount detection operation.
- If the result is unavailable, check that the refrigerant detection operation was executed within the guaranteed temperature range. Perform a test operation to determine if there are any other problems with the system.

Troubleshooting

Error code E503

The manufacturer optimizes the performance of homes and buildings around the world. A business of Ingersoll Rand, the leader in creating and sustaining safe, comfortable and energy efficient environments, the manufacturer offers a broad portfolio of advanced controls and HVAC systems, comprehensive building services, and parts. For more information, visit www.IRCO.com.

The manufacturer has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice.

© 2015 Trane All rights reserved VRF-SVN34C-EN 01 Sep 2015 Supersedes VRF-SVN34B-EN (01 Nov 2014)

We are committed to using environmentally conscious print practices that reduce waste.

