Rooftop variable-air-volume (VAV) systems are used to provide comfort in a wide range of building types and climates. This ENL discusses HVAC system design and operating strategies that can save energy in these systems.

By attending this event you will be able to:
1. Identify cost-effective strategies to reduce the energy used by rooftop VAV systems
2. Summarize how to analyze the economic benefit of various energy-savings strategies
3. Identify system-level control strategies that improve the performance and flexibility of rooftop VAV systems.

Agenda
1) Overview of a rooftop VAV system (components, benefits, challenges, code requirements)
2) Equipment configuration strategies
 a) high-efficiency versus standard efficiency (EER, IPLV)
 b) air-to-air energy recovery
 c) relief fan versus return fan
 d) air-cooled evaporative condensing
 e) hot gas bypass
 f) fan-powered VAV
 g) ECMs on fan-powered VAV boxes
3) System design strategies
 a) Single-zone VAV (arenas, auditoriums, gymnasiuems, sanctuaries)
 b) Hot gas reheat for unoccupied humidity control
 c) Duct design
 d) “Twinning” units into a shared supply duct system?
 e) DOA unit delivering cold OA direct to spaces or dual-duct boxes
 f) Maintenance program
4) Optimized system control strategies
 a) Airside economizing
 b) Optimum start/stop
 c) Fan-pressure optimization
 d) Supply-air temperature reset
 e) Ventilation optimization: DCV (TOD schedule, occupancy sensor, CO2 sensor) combined with ventilation reset
4) Example TRACE analysis
5) Summary
Phil Baggett | marketing engineer – large rooftops | Trane
Since starting with Trane in 1968 Phil has served in several roles of increasing responsibility in manufacturing engineering, product marketing, training, product planning, and product management organizations. Phil’s primary responsibility as marketing engineer for large rooftop products is to identify and implement product change opportunities, and new product-platform development initiatives. He is also responsible for identifying and assisting in the development of sales and application tools to support those initiatives.

John Murphy | senior applications engineer | Trane
John has been with Trane since 1993. His primary responsibility as an applications engineer is to aid system design engineers and Trane sales personnel in the proper design and application of HVAC systems. His main areas of expertise include dehumidification, air-to-air energy recovery, psychrometry, ventilation, and ASHRAE Standards 15, 62.1, and 90.1.

John is the author of numerous Trane application manuals and Engineers Newsletters, and is a frequent presenter on Trane’s Engineers Newsletter Live series of satellite broadcasts. He is also the primary author of the Trane Air Conditioning Clinics, a series of training manuals on HVAC fundamentals. John is a member of ASHRAE, has authored several articles for the ASHRAE Journal, and is a member of that society’s “Moisture Management in Buildings” and “Mechanical Dehumidifiers” technical committees.

Paul Solberg | senior principal applications engineer | Trane
A mechanical engineer from the University of Wisconsin at Platteville, Paul is a 26-year veteran of Trane. He specializes in compressor and refrigeration systems, and has authored numerous Trane publications on these subjects, including application manuals, engineering bulletins, and Engineers Newsletters. Paul served in the technical service and applications engineering areas at various manufacturing locations, where he developed particular expertise supporting split systems, small packaged chillers, rooftop air conditioners, and other unitary products.

Justin Wieman | C.D.S. marketing engineer | Trane
After finishing the Trane Graduate Training Program in 2001, Justin joined the Customer Direct Service (C.D.S.) group as a marketing engineer. Since then he has provided support for various Trane software applications. Presently he is team leader for Trane’s Analysis Software group, and project manager for the Trane Air-Conditioning Economics (TRACE™ 700) product family.
Energy-Saving Strategies for Rooftop VAV Systems

- Equipment configurations
- Alternative system designs
- Optimized system controls
Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
AIA continuing education
Learning Objectives

Participants will learn the following about rooftop VAV systems:

- Cost-effective strategies to reduce energy use
- How to analyze economic impact of various energy-saving strategies
Today’s Presenters

Justin Wieman
marketing engineer

Phil Baggett
marketing engineer

John Murphy
applications engineer

Paul Solberg
applications engineer

ASHRAE Standard 90.1 and 62.1 Requirements
Rooftop VAV System

<table>
<thead>
<tr>
<th>packged DX rooftop air conditioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>return ductwork</td>
</tr>
<tr>
<td>supply ductwork</td>
</tr>
<tr>
<td>supply-air diffusers</td>
</tr>
<tr>
<td>VAV terminal units</td>
</tr>
<tr>
<td>BAS</td>
</tr>
</tbody>
</table>

Satisfy

- Occupant comfort
- Code (or standard) minimum requirements
 - ASHRAE 90.1-2004
 - ASHRAE 62.1-2004
ASHRAE 90.1-2004
Rooftop VAV Systems

- Mandatory
 - Equipment efficiency
 - Controls

- Prescriptive
 - Economizers
 - Limitation on reheat
 - Design fan power
 - Fan control
 - Energy recovery
 - Hot gas bypass

packaged rooftop (air-cooled)
Equipment Efficiencies

<table>
<thead>
<tr>
<th>Size Category</th>
<th>Heating Section Type</th>
<th>Minimum Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td><65,000 Btu/h</td>
<td>All</td>
<td>12.0 SEER*</td>
</tr>
<tr>
<td>≥65,000 Btu/h and <135,000 Btu/h</td>
<td>Electric Resistance Other</td>
<td>10.3 EER 10.1 EER</td>
</tr>
<tr>
<td>≥135,000 Btu/h and <240,000 Btu/h</td>
<td>Electric Resistance Other</td>
<td>9.7 EER 9.5 EER</td>
</tr>
<tr>
<td>≥240,000 Btu/h and <760,000 Btu/h</td>
<td>Electric Resistance Other</td>
<td>9.5 EER, 9.7 IPLV 9.3 EER, 9.5 IPLV</td>
</tr>
<tr>
<td>≥760,000 Btu/h</td>
<td>Electric Resistance Other</td>
<td>9.2 EER, 9.4 IPLV 9.0 EER, 9.2 IPLV</td>
</tr>
</tbody>
</table>

*NAECA requires 13.0 SEER

© 2010 Trane a business of Ingersoll Rand. All rights reserved

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
Zone Thermostatic Controls

- **Required for each zone**
 Perimeter can be treated differently

- **≥5°F deadband**
 Dual setpoint or deadband (can be software for DDC)

systems ≥ 15,000 Btu/h

Automatic Shutdown

- **Automatic 7-day/week time clock with 10-hour battery backup**
 - Exception: 2-day/week thermostat for residential applications

- **Occupancy sensor**

- **Manually operated timer**
 (maximum duration: 2 hours)

- **Security system interlock**
systems $\geq 15,000\text{ Btu/h}$

Setback Controls

- Climate zones 2-8: Lower heating setpoint to 55°F or less
- Climate zones 1b, 2b, 3b (hot/dry): Automatically restart, temporarily operate
 - Raise cooling setpoint to 90°F or higher, or
 - Prevent high space humidity levels

mandatory HVAC provisions

Other Off-Hour Controls

- Provide optimum start if system supply-air capacity $> 10,000\text{ cfm}$
- Zone isolation:
 - 25,000 ft² maximum zone size on one floor
 - Isolation devices to shut off outdoor and exhaust airflow
 - Central systems capable of stable operation

© 2010 Trane a business of Ingersoll Rand. All rights reserved

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
High Occupancy

If outdoor airflow > 3,000 cfm and design occupancy > 100 p/1000 ft²...

Automatically reduce outdoor air intake below design requirements when spaces are partially occupied

Exception:
Systems with exhaust-air energy recovery complying with Section 6.5.6.1

ASHRAE 90.1-2004
Rooftop VAV systems

Mandatory
- Equipment efficiency
- Controls

Prescriptive
- Economizers
- Limitation on reheat
- Design fan power
- Fan control
- Energy recovery
- Hot gas bypass
Energy-Saving Strategies for Rooftop VAV Systems

Std 90.1 economizer requirements

Exception (a)

System ≥ 65,000 Btu/h?
Economizer required

System ≥ 135,000 Btu/h?
Economizer required

Economizer NOT required

Exception (a)

Individual fan-cooling units with less-than-minimum capacities installed in specific climate zones

(System ≥ 65,000 Btu/h?)

Economizer required

(System ≥ 135,000 Btu/h?)

Economizer required

Economizer NOT required

Exceptions

(a) Individual fan-cooling units with less-than-minimum capacities installed in specific climate zones

(b) Systems with gas-phase outdoor air cleaning to meet ASHRAE Standard 62

(c) Systems with > 25% of supply air serving spaces humidified above 35°F DP for process needs

(d) Systems with condenser heat recovery

© 2010 Trane a business of Ingersoll Rand. All rights reserved

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
airside economizer use

Exceptions

(e) Residential space systems with capacities < 5× limit in Exception (a)

(f) Space sensible cooling load ≤ transmission + infiltration load at 60°F

(g) Systems that operate < 20 hr/wk

(h) Supermarket applications, where outdoor air for cooling affects open refrigerated cases

(i) Systems with high mechanical cooling efficiency (≥ Table 6.3.2 requirements)

Simultaneous Heating–Cooling

Zone controls
- No reheating
- No recooling
- No mixing or simultaneously supplying mechanically-cooled and mechanically-heated air
- Exceptions based on zone airflow
simultaneous heating–cooling Exceptions

Zone airflow does not exceed whichever is largest:

- ASHRAE Standard 62 zone requirements for outdoor air
- 0.4 cfm/ft²
- 30% of supply air
- 300 cfm
- ASHRAE Standard 62 equation

simultaneous heating–cooling Exceptions

- Zones with special pressurization requirements
- Zones with code-required minimum circulation rates
- Site-recovered or site-solar energy provides ≥ 75% of reheat energy
dehumidification

Exceptions

- Reducing supply airflow to 50%, or minimum ventilation rate
- Systems < 6.67 tons that can unload at least 50%
- Systems smaller than 3.3 tons

dehumidification

Exceptions

- Systems with specific humidity requirements (museums, surgical suites)
- 75% of reheat/recool energy is site-recovered or site-solar
Fan Power Limitation

<table>
<thead>
<tr>
<th>Supply air volume</th>
<th>Constant volume</th>
<th>Variable volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20,000 cfm</td>
<td>1.2 hp/1,000 cfm</td>
<td>1.7 hp/1,000 cfm</td>
</tr>
<tr>
<td>≥ 20,000 cfm</td>
<td>1.1 hp/1,000 cfm</td>
<td>1.5 hp/1,000 cfm</td>
</tr>
</tbody>
</table>

Air System Control

VAV fan control
- Motors ≥ 15 hp require
 - Variable-speed drive or
 - Vaneaxial fan with variable-pitch blades or
 - Design wattage ≤ 30% at 50% air volume
- DDC systems must include setpoint reset (fan-pressure optimization)
Airside Energy Recovery

- Required if:
 - Supply air capacity ≥ 5,000 cfm
 - Minimum outdoor air ≥ 70%
- Recovery system effectiveness ≥ 50%

Hot Gas Bypass

<table>
<thead>
<tr>
<th>Rated capacity of system</th>
<th>Maximum HGBP capacity, % of total capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 240,000 Btu/h</td>
<td>50%</td>
</tr>
<tr>
<td>> 240,000 Btu/h</td>
<td>25%</td>
</tr>
</tbody>
</table>

- Applied in systems with stepped or continuous unloading
- Exception: Packaged unitary systems
 - ≤ 90,000 Btu/h (7.5 tons)
ASHRAE 62.1 Ventilation Requirements

- **Design**
 - Calculate zone ventilation airflow
 - Determine air distribution effectiveness
 - Calculate system design ventilation intake airflow

- **Operation:**
 - Dynamically calculate system ventilation airflow
 - In VAV system, fixed damper position does not meet requirements

Base Rooftop VAV System

- Equipment efficiency
- Zone controls
- Economizer
- Simultaneous heating and cooling
- Design fan power
- Fan control
- Airside energy recovery
- Hot gas bypass
- Ventilation
Equipment Configuration Strategies

High-Efficiency Equipment

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Reduced operating cost</td>
<td>■ Higher first cost</td>
</tr>
<tr>
<td>■ Potential energy rebates</td>
<td>■ Extended return on investment in some areas</td>
</tr>
<tr>
<td>■ Meet mandated energy codes</td>
<td></td>
</tr>
<tr>
<td>■ Environmentally intelligent, reduces greenhouse gas emissions</td>
<td></td>
</tr>
</tbody>
</table>
High-Efficiency Equipment

- **High-efficiency supply and exhaust fan motors**
 - Insist on NEMA Premium rated
- **Additional evaporator coil rows**
- **Additional condenser coil capacity**

High-Efficiency Equipment

- **Standard efficiency rooftop (Alt 1)**
 - 9.6 EER
 - 604 gross MBH
- **High-efficiency rooftop (Alt 2)**
 - 10.4 EER
 - 644 gross MBH
High-Efficiency Equipment

- **Example energy savings**
 - Three story 60,000 sq. ft office building
 - VAV with reheat system
 - Default settings for building type and exposures
 - Alameda, CA weather data and PG&E utility rate
High-Efficiency Equipment

- Reduced fossil fuel emissions
 - \(\text{CO}_2 \) \(-5,415 \text{ lbm/yr}\)
 - \(\text{SO}_2 \) \(-5,956 \text{ gm/yr}\)
 - \(\text{NO}_x \) \(-8,122 \text{ gm/yr}\)

Air-to-Air Energy Recovery
Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
Air-to-Air Energy Recovery

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Reduces cooling, dehumidification, heating, and humidification energy</td>
<td>- Increases fan energy</td>
</tr>
<tr>
<td>- Allows equipment downsizing</td>
<td>- Requires exhaust air be routed back to rooftop unit</td>
</tr>
</tbody>
</table>

Air-to-Air Energy Recovery

- Size energy-recovery device for minimum outdoor airflow
- Strive for balanced airflows
- Integrate control with airside economizer operation
- How much cross-leakage is acceptable?
- Provide a means of capacity control
Building Pressure Control

intake airflow

relief airflow

control based on RA plenum pressure

Central Return Fan

return fan

relief damper

flow-measuring damper

space

space

© 2010 Trane a business of Ingersoll Rand. All rights reserved

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
modulated control

Central Relief Fan

Return vs. Relief Fan?

Return Fan
- Partial static placed on return fan
 Use in systems with high RA pressure drop
- Two continuous motors to provide ventilation air
- (+) Pressurized diverting plenum
 RA leakage out relief dampers

Relief Fan
- Supply fan must be sized for entire static
- Intermittent relief fan operation
 Reduced operating cost
- (-) Pressurized diverting plenum
 OA leakage in relief dampers

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
Avoid Hot Gas Bypass

- **Purpose**
 - Frost prevention
 - Stabilize discharge temperature

- **HGBP**
 - One step greater capacity
 - Poor energy efficiency
Avoid Hot Gas Bypass

- Choose units that maximize the stages of compression
- Use intertwined coils
- Don’t oversize rooftop tonnage... maximizes suction temperature
- Use frost control
- Remember that the average air condition is what is important

parallel Fan-Powered VAV

- Cool primary air from rooftop unit
- Warm air recirculated from ceiling plenum (first stage of heat)
- Heating coil (second stage of heat)
ECM Fan-Powered Boxes

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduces VAV terminal fan energy</td>
<td></td>
</tr>
</tbody>
</table>

ECM Efficiency

<table>
<thead>
<tr>
<th>Energy input, kW/cfm</th>
<th>Airflow, cfm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>1500</td>
</tr>
<tr>
<td>0.5</td>
<td>2000</td>
</tr>
<tr>
<td>0.4</td>
<td>2500</td>
</tr>
<tr>
<td>0.3</td>
<td>3000</td>
</tr>
<tr>
<td>0.2</td>
<td>3500</td>
</tr>
<tr>
<td>0.1</td>
<td>4000</td>
</tr>
</tbody>
</table>

- Permanent split capacitor (PSC) motor
- Electrically-commutated motor (ECM)
ECM Fan-Powered Boxes

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduces VAV terminal fan energy</td>
<td>Higher first cost</td>
</tr>
<tr>
<td>Greater airflow range</td>
<td>Potential for disruptive harmonic currents</td>
</tr>
<tr>
<td>Capability for self-balancing</td>
<td></td>
</tr>
<tr>
<td>Less-annoying sound levels</td>
<td></td>
</tr>
</tbody>
</table>

Equipment Configuration Strategies

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>High efficiency</td>
<td>Avoid hot gas bypass</td>
</tr>
<tr>
<td>Energy recovery</td>
<td>Fan-powered boxes</td>
</tr>
<tr>
<td>Exhaust fan</td>
<td>Electronically commutated motors</td>
</tr>
<tr>
<td>Evaporative condenser</td>
<td></td>
</tr>
</tbody>
</table>
Alternative System Designs

Single-Zone VAV

© 2010 Trane a business of Ingersoll Rand. All rights reserved

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
single-zone VAV

Benefits

- Lower operating cost...
 Reduces fan speed at part load

- Reduced sound levels...
 Reduces fan-generated noise at part load

- Improved dehumidification...
 Continues to supply cool, dry air at part load

- Simple controls and standard equipment

single-zone VAV

Application Considerations

- Large zones should have uniform loads

- Design air distribution system for variable airflow
 - Short, symmetrical ducts
 - Size for low-to-medium duct velocities
 - Diffusers that prevent “dumping”

- Consider need for zone heating
single-zone VAV
Application Considerations

- Prevent overcooling the zone...
 SA temperature reset
- Employ CO₂-based DCV

![Diagram of single-zone VAV system with CO₂-based DCV](image)
humidity control
Unoccupied Mode

dehumidification

unoccupied humidity control
Hot Gas Reheat

evaporator
condenser
compressor
reheat coil
reheat valve
Dedicated OA System

- VAV rooftop (recirculating)
- dedicated outdoor-air unit
- dual-duct VAV terminals

Alternative System Designs

- Single-zone VAV
- Demand-controlled ventilation
- Humidity control
- Dedicated outdoor-air unit in conjunction with rooftop

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
Optimized System Controls

Energy-saving strategies for rooftop VAV systems

Airside Economizer

© 2010 Trane a business of Ingersoll Rand. All rights reserved

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
High-Limit Shutoff

<table>
<thead>
<tr>
<th>Control type</th>
<th>Disable econ (minimum OA) when OA is:</th>
<th>Enable econ (up to 100% OA) when OA is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed dry bulb</td>
<td>Warmer than fixed setting</td>
<td>Cooler than fixed setting</td>
</tr>
<tr>
<td>Fixed enthalpy</td>
<td>Higher enthalpy than fixed setting</td>
<td>Lower enthalpy than fixed setting</td>
</tr>
<tr>
<td>Differential enthalpy</td>
<td>Higher enthalpy than RA</td>
<td>Lower enthalpy than RA</td>
</tr>
</tbody>
</table>

VAV system (Cincinnati, Ohio)
Energy Comparison

<table>
<thead>
<tr>
<th>HVAC energy consumption, % of base</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
<tr>
<td>65°F fixed DB</td>
</tr>
<tr>
<td>28 Btu/lb fixed h</td>
</tr>
<tr>
<td>differential enthalpy</td>
</tr>
</tbody>
</table>

- 9% decrease
- 10% decrease
- 11% decrease
Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
Supply Fan Control

Fan Pressure Optimization

© 2010 Trane a business of Ingersoll Rand. All rights reserved

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
Energy-Saving Strategies for Rooftop VAV Systems

Part-Load Energy Savings

Reduced Risk of Fan Surge
SA Temperature Reset

- Decreases compressor energy
 - Higher suction pressure
 - More hours of modulated economizing
- Decreases reheat energy
- Increases fan energy
- Raises humidity level in the zones

To Reset or Not to Reset

- Mild climates (many hours when OADB < 60°F)
- Minimum VAV airflow settings > 30%
- Efficient air distribution system
- Interior zones with varying cooling loads

- Hot climates or humid climates (few hours when OADB < 60°F)
- Efficient part-load fan modulation
- Inefficient air distribution system
- Zones with near-constant cooling loads
SAT reset based on OA temperature

Example

SA temperature setpoint, °F

outdoor dry-bulb temperature, °F

50 55 60 65 70 75 80

55 56 57 58 59 60 61

SAT reset based on “critical” zone

Example

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
SAT reset

Application Considerations

- **Design zones with nearly-constant cooling loads for warmer (reset) SAT**
 - May require larger VAV terminals and ductwork
 - Allows SAT reset while still providing needed cooling to these zones

- **Design an efficient air distribution system**
 - Employ fan-pressure optimization

SAT reset

Application Considerations

- **Analyze the system**
 - Will compressor and reheat energy savings outweigh additional fan energy?

- **Consider impact on zone humidity**
 - Disable reset when humid outside
 - Use a humidity sensor to disable reset when zone humidity gets too high
ASHRAE 62.1-2004
Dynamic Reset of OA

- May reset OA intake flow or zone OA flow in response to:
 - Variations in zone population (DCV)
 - Variations in ventilation efficiency due to changes in airflow (ventilation reset)

ventilation optimization
Zone Level: DCV
System Level: Vent Reset

- Required ventilation (Voz)
- Actual primary airflow (Vpz)

Communicating BAS
- New OA setpoint (Vot)

System-Level Ventilation Reset Equations defined by ASHRAE 62

DCV and Vent Reset

- Assures each zone receives proper ventilation without requiring a CO₂ sensor in every zone
- Enables documentation of actual ventilation system performance
- System-level ventilation reset equations are defined by ASHRAE 62
Optimized System Controls

- Economizer
- Optimal stop and start
- Fan pressure optimization
- Supply air temperature reset
- Demand controlled ventilation and ventilation reset

Analysis

Energy-saving strategies for rooftop VAV systems
Building Analysis Tools

TRACE™ 700
HVAC load design and analysis software

- Comprehensive energy and economic analysis for virtually any building

rooftop VAV system Example Analysis

"Optimized" System
- Optimal start
- SA temperature reset
- Ventilation optimization
- Fan-pressure optimization
- Total-energy wheel
- Comparative enthalpy economizer
- Parallel FPVAV (perimeter zones)
Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
Keep the system working properly

Proper Maintenance

- Periodic maintenance enhances unit performance
 - Always perform airside maintenance first
 - Inspect air filters regularly, clean or replace as necessary
 - 0.1 inch of additional static pressure increases supply motor kW by 7%
 - Inspect condensate drains and traps whenever filters are inspected, clean as needed
Proper Maintenance

- Periodic maintenance enhances unit performance
 - Inspect fresh- and return-air damper mechanisms
 - Clean blades as necessary
 - Verify all damper linkages move freely
 - Check supply/relief fan motor and shaft bearings, lubricate, repair, or replace as necessary

Proper Maintenance

- Periodic maintenance enhances unit performance
 - Inspect evaporator and condenser coils for dirt buildup, clean as needed
 - Make sure that condenser fans rotate freely, check bearings for wear
 - Verify all condenser fan mountings are secure
Proper Maintenance

Periodic maintenance enhances unit performance

#1: Improper refrigerant charge
- Overcharging decreases superheat and increases subcooling
- 10% overcharge can increase compressor kW by approximately 3.5% at design conditions

Proper Maintenance

Periodic maintenance enhances unit performance

#1: Improper refrigerant charge
- Undercharging increases superheat and decreases subcooling... resulting in capacity loss
- Always charge according to manufacturers recommendations, and instructions
Answers to Your Questions

Energy-saving strategies for rooftop VAV systems

This concludes the American Institute of Architects Continuing Education System Program.

Energy-efficient rooftop VAV systems

- Equipment configuration strategies
- Alternative system designs
- Optimized system controls
- Analysis
- Maintenance
a Trane *Engineers Newsletter Live* online program

Energy-Saving Strategies for Rooftop VAV Systems

references for this broadcast

Where to Learn More

watch past programs

ENL Archives

Insightful topics on HVAC system design:
- Chilled-water plants
- Air distribution
- Refrigerant-to-air systems
- Control strategies
- Industry standards and LEED
- Energy and the environment
- Acoustics
- Ventilation
- Dehumidification

© 2010 Trane a business of Ingersoll Rand. All rights reserved

Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional.
mark your calendar
2007 ENL Broadcasts

- Feb 21 Waterside heat recovery
- Sep 12 Humidity control
- Nov 14 LEED™ case studies