

 $\ensuremath{\mathbb{C}}$ 2018 Trane a business of Ingersoll Rand. All rights reserved

chiller-tower interaction Heat Rejection

- Condenser water warms in proportion to heat rejection and condenser water flow rate
- Condenser pressure rises with condenser temperature
- Compressor work increases as condenser pressure rises

example at standard rating conditions **Tower Performance**

	Base condition	
Flow rate, gpm	1500	The second s
Design WB, °F	78	
Approach, °F	7	
Hot water, °F	94.3	
Cold water, °F	85	
Fan power, hp	40	

	Base	Same tower	
	condition	lower flow	
Flow rate, gpm	1500	1000	the martial
Design WB, °F	78	78	Alter -
Approach, °F	7	4	
Hot water, °F	94.3	96	1 2001
Cold water, °F	85	82	
Fan power, hp	40	40	1

	Base	Same tower, lower flow	Smaller tower,
Flow rate, gpm	1500	1000	1000
Design WB, °F	78	78	78
Approach, °F	7	4	7
Hot water, °F	94.3	96	99
Cold water, °F	85	82	85
Fan power, hp	40	40	25

 $\ensuremath{\mathbb{C}}$ 2018 Trane a business of Ingersoll Rand. All rights reserved

Industry advisor	Recommendation
Pacific Gas and Electric CoolTools™	10°-15°F ∆T single stage 12°-18°F ∆T multistage or positive displacement
Kelly and Chan	14.2°F ∆T for 3.6-8.3% energy savings in various climates

- Pipes, valves, fittings
- Tower static head

rump Sei	ection
	Condenser flow rate, gpm/ton: 3.0
System head, ft	30
Bundle head, ft	25.7
Tower static, ft	13
Flow rate, gpm	1500
Pump power, hp kW	34.7 27.8
	Base

 $\ensuremath{\mathbb{C}}$ 2018 Trane a business of Ingersoll Rand. All rights reserved

chilled water p System E	olant designergy	gn: example Use
	Condenser	flow rate, gpm/ton:
Chiller	3.0 286.0	2.0 307.0
Condenser pump	27.8	10.7
Cooling tower	32.1	20.1
Total kW	345.9	337.7
5 American Sta	Base design	Reduced flow

100	Reduced f	luced flow can retrofit budgets		
	Condense Existing	r-side opportunity: Retrofit		
Capacity, tons	500	750		
Flow rate, gpm	1500	1500		
Condenser wat entering, °F leaving, °F	er: 85 95	88 102.4		
Design wet bul	b, °F 78	78		

a win-win-win situation Saving Energy-And More

"In addition to the electric energy savings, this chiller plant will have prevented the emissions of 1.1 million lb of CO₂ per year, 8,800 lb of SO₂ per year, and 3,100 lb of NO_x per year. This is an overall win-win-win situation where the first cost is reduced, operating cost is minimized, plus significant environmental benefits are realized as an additional benefit."

from "A Chiller Challenge" by T. Chan

	IIIIts: All	Example			
Flow	500-ton chiller	500-ton cooling tower			
Design	1000 gpm	1000 gpm			
Maximum	2469 gpm	1290 gpm			
Minimum	449 gpm	780 gpm			
	Tower flow ran narrower than	Tower flow range can be much narrower than that of chiller			

system prote Tower F	ection Iow Limits
Flow violation	Result
Too low	 "Holes" in fill coverage Lost efficiency Mineral deposits
Too high	 "Over-flow" distribution Lost efficiency Lost water Lost treatment chemicals
Consult tower m	anufacturer Specify limits

^{chiller-to}	ower optir ficatio	nization n Char	t	
% Full load	Wet bulb (deg F)	Tower setpoint	Chiller + tower kW	
100	78			
75	71			
50	60			
50	71			
25	60			

	chiller-tower optimization: dry climate Specification Chart							
	% Full load	Wet bulb (deg F)	Tower setpoint	Chiller + tower kW				
	100	71						
	75	65						
	50	57						
~	50	65						
2005 America	25	57						
n Standard Inc.	2.44		.79.3	1				

condenser water flow Variable-Speed Pump?

