

ASHRAE 62.1: Section 6.2 Ventilation Rate Procedure (VRP)

- Prescribes quantity of outdoor air delivered to each zone based
- How to calculate outdoor air flow needed at the system intake

Learning objectives

- Describe the multi-zone calculation process
- Show how TRACE™
 determines system level
- Common questions

Zone Airflow Rates

Define Zone Level Parameters

- a. Define zone airflow rates and distribution effectiveness
 - a. $R_a = Outdoor airflow rate per unit area (Table 6-1)$
 - b. $R_p = Outdoor airflow rate per person (Table 6-1)$
 - c. E_z = Define zone air distribution effectiveness (Table 6-2)

Zone Airflow Rates

1 Define Zone Level Parameters

- a. Define zone airflow rates and distribution effectiveness
 - a. R_a = Outdoor airflow rate per unit area (Table 6-1)
 - b. $R_p = Outdoor airflow rate per person (Table 6-1)$
 - c. E_z = Define zone air distribution effectiveness (Table 6-2)
- 2 Calculate Breathing Zone Outdoor Airflow (V_{bz})
 - a. Vbz= (Rp x Pz) + (Ra x Az),where Pz is the number of people and Az is the zone area

Zone Airflow Rates

- 1 Define Zone Level Parameters
 - a. Define zone airflow rates and distribution effectiveness
 - a. $R_a = Outdoor airflow rate per unit area (Table 6-1)$
 - b. $R_p = Outdoor airflow rate per person (Table 6-1)$
 - c. E_z = Define zone air distribution effectiveness (Table 6-2)
- 2 Calculate Breathing Zone Outdoor Airflow (V_{bz})
 - a. Vbz= (Rp x Pz) + (Ra x Az),where Pz is the number of people and Az is the zone area
- Calculate Zone Outdoor Airflow (V_{oz})
 a. Voz = Vbz/Ez

TRACE™ ASHRAE Standard 62.1 report Ventilation Parameters

							_	Cooli	ng—
	Occupancy	Rp	Pz	Ra	Az	Vbz	Ez		Voz
System Zone Room	Category	cfm / p	People	cfm/ft²	ft²	cfm		1377	cfm
Alternative 1									
Zone 2	Officespace	5.00	10.00	0.06	500	80	1.00		80
Zone 1	Officespace	5.00	30.00	0.06	1,500	240	1.00		240
VAV reheat		5.00	40.00	0.06	2,000	320			320

TRACE™ ASHRAE Standard 62.1 report Ventilation Calculation for Cooling Design

System Zone Room	ВохТуре	Vpz cfm	Vfan cfm	Vdz cfm	Vpz-min cfm	Voz-clg cfm	Zd	
Alternative 1								
Zone 2	VAV Reheat	1,600	1,600	1,600	400	80	0.200	
Zone 1	VAV Reheat	1,600	1,600	1,600	400	240	0.600	*
VAV reheat		3,200	2,560	3,200	800	320		

TRACE™ ASHRAE Standard 62.1 report System Ventilation Requirements

AHULocation	Description		∑ Vpz cfm	Ps People	∑ Pz People	D Ps /∑Pz	Vou cfm
Alternative 1							
System	VAV reheat	Cooling	3,200	40	40	1.00	320
		Heating	800	40	40	1.00	320

TRACE™ ASHRAE Standard 62.1 report System Ventilation Requirements

AHU Location	Description		Vou cfm	Vps cfm	Xs
Alternative 1					
System	VAV reheat	Cooling	320	2,560	0.125
		Heating	320	800	0.400

8 Determine system ventilation efficiency (Ev):

Equation A-1

 $Ev = 1+X_s-Z_{d-max} = 1+0.125-0.6 = 0.525$

Table 6.3 System Ventilation Efficiency

Max (Zp)	Ev
≤ 0.15	1.0
≤ 0.25	0.9
≤ 0.35	0.8
≤ 0.45	0.7
≤ 0.55	0.6
> 0.55	Use Appendix A

TRACE and ASHRAE Standard 62.1 Common Questions

- Why is my system 100% OA?
- Why does my ASHRAE multi-zone spreadsheet does not match the TRACE 700 output?
- Why does TRACE calculate Zd using Vpz-min?

Resolving 100% OA • Set Max Vent Allowed

- Set Max Vent Allowed (Max Zd) in Create Systems>Advanced
- Increase VAV min in critical zone in Create Rooms>Airflows

ASHRAE Standard 62.1

Lesson 2: Program Methodology

100% OA

System Ventilation Requirements											
			Vou	Vps	Xs	Ev	Vot	%OA			
AHU Location	Description		cfm	cfm			cfm	Vot / Vps			
Alternative 2											
System	System - 001	Cooling	480	2,560	0.188	0.188	2,560	100.0			
		Heating	480	800	0.600	0.600	800	100.0			

Max Zd = 75%

System Ventilation Requirements											
AHU Location	Description		Vou cfm	Vps cfm	Xs	Ev	Vot cfm	%OA Vot / Vps			
Alternative 3											
System	System - 001	Cooling Heating	480 480	2,560 933	0.188 0.514	0.438 0.764	1,097 628	42.9 67.3			

Max Zd

Pros

Reduce OA cfm

- Reduced outdoor air cfm
- Reduced ventilation load

Cons

Increased airflows

- Increased minimum stop
- Increased fan power
- Increased reheat loads

TRACE and ASHRAE Standard 62.1 Common Questions

- Why is my system 100% OA?
- Why does my ASHRAE multi-zone spreadsheet does not match the TRACE 700 output?
- Why does TRACE calculate Zd using Vpz-min?

TRACE and ASHRAE Standard 62.1 Common Questions

- Why is my system 100% OA?
- Why does my ASHRAE multi-zone spreadsheet does not match the TRACE 700 output?
- Why does TRACE calculate Zd using Vpz-min?

Additional resources

- TRACE™ 700 User's Manual
- TRACE online (F1) help
- Trane.com/EN
- Trane.com/ContinuingEducation

