

Trane Engineers Newsletter Live Series Fans in Air-Handling Systems

Fans used in air-handling systems often have a significant impact on energy use and acoustics. How much of an impact depends on how a fan is selected, installed, and operated. Trane applications engineers discuss fan performance curves and fan laws, different fan types (fan blade shape, housed vs. plenum fans, direct-drive plenum fans, fan arrays), how a fan interacts with various types of systems, considerations when selecting a fan (efficiency, acoustics, footprint), and the ASHRAE Standard 90.1 fan power limitations.

(IR) Ingersoll Rand

By attending this event you will be able to:

- 1. Summarize how to use fan performance curves
- 2. How to select, install, and operate fans to avoid problems related to inadequate airflow or excessive noise
- 3. When to select the different fan types (housed vs. plenum, belt-drive vs. direct-drive, single fan vs. a fan array)
- 4. How to design fan systems to meet the prescriptive requirements of ASHRAE Standard 90.1-2007

Agenda

- 1) Fan performance curves
 - a) How developed (lab setup, difference with AHU vs. RTU)
 - b) What they are for (selection) and not for (predicting field performance)
 - c) Fan laws
 - d) Interaction of fans in a system (system curve)

2) Fan/unit selection considerations

- a) Types of fans (energy bhp or motor input kW, acoustics, footprint, maintenance, redundancy)
- b) Impact of system configuration on fan selection (examples)
- c) System effect (example using AMCA guide)
- d) Acoustics topics
- 3) Common problems
 - a) Fan is not delivering enough airflow
 - b) Fan is making too much noise
- 4) Meeting ASHRAE 90.1 requirements
 - a) Option 1 vs. Option 2 (fan power limitation)
 - b) Lowering bhp/cfm
- 5) Summary

Trane Engineers Newsletter Live Series Fans in Air-Handling Systems (2010)

Dave Guckelberger | application engineer | Trane

Dave has a wide range of product and system responsibilities as a Trane applications engineer. His expertise includes acoustic analysis and modeling of HVAC systems, electrical distribution system design, and the equipment-room design requirements established by ASHRAE Standard 15. He also provides research and interpretation on how building, mechanical, and fire codes impact HVAC equipment and systems.

In addition to traditional applications engineering support, Dave has authored a variety of technical articles on subjects ranging from acoustics to ECM motors to codes. After graduating from Michigan Tech with a BSME in thermo-fluids, he joined Trane as a development engineer in 1982 and moved into his current position in Applications Engineering in 1987.

Dustin Meredith | application engineer | Trane

Dustin is an application engineer with expertise in sound predictions, fan selection, and vibration analysis. He also leads development and implementation projects for new and upcoming air-handling options. Dustin has authored various technical engineering bulletins and applications engineering manuals.

Dustin is a corresponding member on ASHRAE TC 2.6 – Sound & Vibration Control – and ASHRAE TC5.1 – Fans. After graduating from the University of Kentucky with BSME, BSCS and MBA degrees, hejoined Trane as a marketing engineer in 2000 and moved into his current position in Application Engineering in 2005. Dustin is a member of ASHRAE and is the primary Trane contact for AMCA.

John Murphy | application engineer | Trane

John has been with Trane since 1993. His primary responsibility as an applications engineer is to aid design engineers and Trane sales personnel in the proper design and application of HVAC systems. As a LEED Accredited Professional, he has helped our customers and local offices on a wide range of LEED projects. His main areas of expertise include energy efficiency, dehumidification, air-to-air energy recovery, psychrometry, ventilation, and ASHRAE Standards 15, 62.1, and 90.1.

John is the author of numerous Trane application manuals, Engineers Newsletters and ASHRAE Journal articles. He is a member of ASHRAE, and has served on ASHRAE's "Moisture Management in Buildings" and "Mechanical Dehumidifiers" technical committees. He was a contributing author of the Advanced Energy Design Guide for K-12 Schools and the Advanced Energy Design Guide for Small Hospitals and Health Care Facilities, and technical reviewer for The ASHRAE Guide for Buildings in Hot and Humid Climates.

Dennis Stanke | staff application engineer | Trane

With a BSME from the University of Wisconsin, Dennis joined Trane in 1973, as a controls development engineer. He is now a Staff Applications Engineer specializing in airside systems including controls, ventilation, indoor air quality, and dehumidification. He has written numerous applications manuals, newsletters, and technical articles and columns.

An ASHRAE Fellow, he recently served as Chairman for SSPC62.1, the ASHRAE committee responsible for Standard 62.1, "Ventilation for Acceptable Indoor Air Quality," and he serves on the USGBC LEED Technical Advisory Group for Indoor Environmental Quality (the LEED EQ TAG).

Today's Presenters

Dennis Stanke Staff Applications Engineer

Dave Guckelberger Applications Engineer

Fundamentals Fan Performance Curves

Fan/Unit Considerations

Fan type and wheel diameter	Input power, bhp	Rotational speed, rpm		
Housed AF, 25 in. + diffuser section	15.0	1450		
Belt-drive plenum AF, 35.56 in.	15.4	1090		
Direct-drive plenum AF, 30 in.	14.1	1370		
final housed filters fan	final filters	plenum 5 fan		

summary Housed vs. Plenum Fans

- When discharging into a single, sufficiently-long, straight section of duct that is about the same size as the fan outlet, a housed fan will likely require less power than a plenum fan, but a plenum fan will likely have lower discharge sound levels.
- If a discharge plenum is added downstream of a housed fan to reduce sound levels or to allow for discharge flexibility, a directdrive plenum fan will likely require less power than a housed airfoil fan, with similar discharge sound levels. But the plenum fan will likely result in a shorter air-handling unit.
- With downstream sections (such as a discharge plenum, final filter, gas heater, or even a blow-thru cooling coil), a direct-drive plenum fan will likely require less power than either a housed or belt-driven plenum fan.

Fan type and wheel diameter	Wheel width, % of nominal	Fan rpm	Motor speed, rpm	Input power, bhp
Direct-drive plenum AF, 30 i (synchronous-speed selecti	n. 57% on)	1780	1800	15.4
Direct-drive plenum AF, 30 i (flexible-speed selection)	n. 100%	1320	1200	12.8

)+v	Diameter	Downstream	Length of	Downstream	Downstream total
aly	in.	in.	in.	in.	in.
1	33	50.5	54.3	+ 0	→ 54.3
2	24.5	38.8	42.0	+ 0	→ 42.0
3	20	33.1	35.3	+ 18	→ 53.3
4	18.75	29.9	31.4	+ 18	→ 49.4

e F	xample Provi	ding R	edun	dancy	y with	a F	an Array
Qty	Diameter	Level of	Airflow	Input power	Input power	Motor s	size an)
running	in.	redundancy	cfm	bhp	bhp	hp	any,
2	24.5	Design	7500	6.55	13.10	7.5	
1	24.5	100%	15000	16.13	16.13	20	(change from 7.5 to 20 hp motors)
1	24.5	70%	10500	7.13	7.13	7.5	(no change in motor sizes)
50	© 2010 Tran	e a business of Inge	rsoll-Rand				

			cuun	uancy	/ WILII	aı	an Anay
Qty running	Diameter, in.	Level of redundancy	Airflow (each fan), cfm	Input power (each fan), bhp	Input power (total), bhp	Motor s (each fa hp	ize an),
2	24.5	Design	7500	6.55	13.10	7.5	
1	24.5	100%	15000	16.13	16.13	20	(change from 7.5 to 20 hp motors
1	24.5	70%	10500	7.13	7.13	7.5	(no change in motor sizes)
Qty running	Diameter,	Level of redundancy	Airflow (each fan),	Input power (each fan),	Input power (total),	Motor s (each fa	an),
	in.		cfm	bhp	bhp	hp	
3	20	Design	5000	4.68	14.04	7.5	
2	20	100%	7500	7.43	14.86	7.5	(no change in motor sizes)
Qty running	Diameter,	Level of redundancy	Airflow (each fan),	Input power (each fan),	Input power (total),	Motor s (each fa	an),
	in.		cfm	bhp	bhp	hp	
4	18.25	Design	3750	3.53	14.12	5	
3	18.25	100%	5000	4.71	14.13	5	(no change in motor sizes)

	Single	Multiple E (Fan A)DP Fans Array)
	DDP Fan	Fewer Fans	More Fans
AHU footprint	√	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$
Redundancy	none	$\checkmark\checkmark\checkmark$	$\checkmark\checkmark\checkmark$
Serviceability	√	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$
AHU cost	√ √ √	√√	✓
Efficiency	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	✓
AHU acoustics	\ \ \	√ √	✓
an reliability	\ \ \	√ √	✓

summary Single Fan Versus a Fan Array

- Benefits of using a fan array
 - · Reduction in overall length of air-handling unit
 - Redundancy
 - · Easier to replace fans and motors
- Drawbacks of using a fan array
 - · Increased air-handling unit cost
 - Higher input power
 - · Higher sound levels
- When a fan array is desired, using fewer larger fans will typically be a better overall solution than using many smaller fans

<u>Blast Area</u> Outlet Area	Outlet Elbow Position	No Outlet Duct	12% Effective Duct	25% Effective Duct	50% Effective Duct	100% Effective Duct	
0.4	A B C D	N M-N L-M L-M	0 N M M	P-Q O-P N N	S R-S Q Q		
0.5	A B C D	0-P N-0 M-N M-N	P-QP O-P N N	R Q.P O.P	T S-T R-S R-S		
0.6	ABCD	0 P 0 0	Q-R Q O O	SROQ	UTSS	T FACTOR	
0.7	A B C D	R-S Q-R P P	S R-S Q Q	T S-T R-S R-S	V U-V T T	TEM EFFEC	
0.8	A B C D	S R-S Q-R Q-R	S-T S R R	T-U T S S	W V U-V U-V	NO SYSI	
0.9	A B C D	T S R R	T-U S-T S S	U-V T-U S-T S-T	***		Source: Air Movement and Control Association 2002. Fans and Systems, Publication 201. Arlington Heights, IL: AMCA.
1.0	A B C D	T S-T R-S R-S	T-U T S S	U-V U T T	** ** *		

Fan Sound

- Sound generation is influenced by
 - Fan type
 - Flow rate
 - Total pressure
 - Efficiency
 - Flow into and out of the fan

Vheel size, in.; an type ^a	20FC	16FC	20FC	18FC	22FC	25FC	22FC	27Q	20 BI
Operating characte	ristics at	t design	conditior	n					
Tip speed, ft/min	3,812	4,023	3,780	3,856	3,789	3,821	3,818	11,350	8,552
Revolutions/min ^b	727	959	721	819	657	583	662	1,605	1,631
Outlet velocity	1,994	2,942	1,994	2,411	1,939	1,480	1,939	2,202	1,975
Brake horsepower	6.0	8.2	5.8	6.7	5.3	5.2	5.2	5.5	7.1
Static efficiency	52	38	53	47	59	60	60	58	44
Sound-power level	by octav	/e-band	center fr	requency	, ref 10 ⁻	¹² watt			
63 Hz	94	98	94	96	87	87	88	85	104
125 Hz	92	95	91	93	87	87	88	85	97
250 Hz	86	89	86	87	79	78	79	83	95
500 Hz	83	86	83	84	78	76	78	81	86
1,000 Hz	79	86	79	82	74	72	74	80	86
2,000 Hz	78	85	78	81	70	68	70	76	81
4,000 Hz	73	81	73	77	65	63	66	71	77
8,000 Hz	66	75	66	70	60	58	60	64	72
Basis of comparison	Ranking	of soun	d level (1	1 = quie	test, 9 =	noisies	t)		
Tip speed	3	7	1	6	2	5	4	9	8
Outlet velocity	5	9	6	7	2	1	3	8	4
Brake horsepower	6	9	5	7	3	1	2	4	8
Static efficiency	6	9	5	7	3	1	2	4	8
NC by full-octavec	6	8	5	7	3	2	4	1	9

Fan System Problems

- Most common complaints
 - · Insufficient airflow
 - Excessive noise/vibration
- Common causes for insufficient airflow
 - Underestimated system resistance
 - Poor accounting for system effect
 - · Unanticipated installation modifications
 - Hence, poor fan selection

AMCA 202 "Troubleshooting"

- Lists possible causes for low airflow, including:
 - · Improper fan installation or assembly
 - Damage in handling or transit
 - System design error
 - · Deterioration of system
 - Faulty controls
 - Poor fan selection
- Includes detailed troubleshooting checklists

Common Problems: Too Much Noise

ASHRAE 90.1 Requirements

	Limit	Constant Volume	Variable Volume
Option 1: Fan System Motor Nameplate hp	Allowable Nameplate Motor hp	$\mathrm{hp} \leq CFM_S \cdot 0.0011$	$\mathrm{hp} \leq CFM_S \cdot 0.0015$
Option 2: Fan System bhp	Allowable Fan System bhp	$bhp \le CFM_S \cdot 0.00094 + A$	$bhp \le CFM_S \cdot 0.0013 + 2$
where PD = each applicable pre-	ssure drop adjustment from Table 6.5.3.1.1B in in	. W.C.	
where PD = each applicable pre CFM_D = the design airflow t	ssure drop adjustment from Table 6.5.3.1.1B in in hrough each applicable device from Table 6.5.3.1	. w.c. .1B in cubic feet per minute	
where PD = each applicable pre CFM_D = the design airflow t	ssure drop adjustment from Table 6.5.3.1.1B in in hrough each applicable device from Table 6.5.3.1	w.c. 1B in cubic feet per minute	

ASHRAE 90.1-2007: Fan System Power Limitation Option 1: Motor Nameplate Horsepower

TABLE 6.5.3.1.1A Fan Power Limitation^a

	Limit	Constant Volume	Variable Volume
Option 1: Fan System Motor Nameplate hp	Allowable Nameplate Motor hp	$\mathrm{hp} \leq CFM_S \cdot 0.0011$	$\mathrm{hp} \leq CFM_S \cdot 0.0015$
Option 2: Fan System bhp	Allowable Fan System bhp	$bhp \le CFM_S \cdot 0.00094 + A$	$bhp \le CFM_S \cdot 0.0013 + A$
where CFM_5 = the maximum design supp hp = the maximum combined fi blup = the maximum combined fi A = sum of $(PD \times CFM_D/413)$ where PD = each applicable pres CFM_D = the design airflow th	ly airflow rate to conditioned spaces served by th totor nameplate horsepower in brake horsepower i) sure drop adjustment from Table 6.5.3.1.1B in in rrough each applicable device from Table 6.5.3.1	e system in cubic feet per minute w.c. 1B in cubic feet per minute	
example: 3	0,000 cfm VAV sys	stem	
allowable r	nameplate motor h	p ≤ 45 (30,000 ×	0.0015)
109 © 2010 Trane a busine	ess of Ingersoll-Rand		

ASHRAE 90.1-2007: Fan System Power Limitation Option 2: Pressure Drop Adjustments

Device	Adjustment
Credits	
Fully ducted return and/or exhaust air systems	0.5 in. w.c.
Return and/or exhaust airflow control devices	0.5 in. w.c.
Exhaust filters, scrubbers, or other exhaust treatment	The pressure drop of device calculated at fan system design condition
Particulate Filtration Credit: MERV 9 through 12	0.5 in. w.c.
Particulate Filtration Credit: MERV 13 through 15	0.9 in. w.c.
Particulate Filtration Credit: MERV 16 and greater and electronically enhanced filters	Pressure drop calculated at 2× clean filter pressure drop at fan syster design condition
Carbon and other gas-phase air cleaners	Clean filter pressure drop at fan system design condition
Heat recovery device	Pressure drop of device at fan system design condition
Evaporative humidifier/cooler in series with another cooling coil	Pressure drop of device at fan system design condition
Sound Attenuation Section	0.15 in. w.c.
Deductions	
Fume Hood Exhaust Exception (required if 6.5.3.1.1 Exception [c] is taken)	-1.0 in. w.e.

Option 2 Example	
TABLE 6.5.3.1.1B Fan Power	Limitation Pressure Drop Adjustment
Device	Adjustment
Credits	
Fully ducted return and/or exhaust air systems	0.5 in. w.c.
Return and/or exhaust airflow control devices	0.5 in. w.e.
Exhaust filters, scrubbers, or other exhaust treatment	The pressure drop of device calculated at fan system design condition
Particulate Filtration Credit: MERV 9 through 12	0.5 in. w.c.
Particulate Filtration Credit: MERV 13 through 15	0.9 in. w.c.
Particulate Filtration Credit: MERV 16 and greater and electronically enhanced filters	Pressure drop calculated at 2× clean filter pressure drop at fan system design condition
Carbon and other gas-phase air cleaners	Clean filter pressure drop at fan system design condition
Heat recovery device	Pressure drop of device at fan system design condition
Evaporative humidifier/cooler in series with another cooling coil	Pressure drop of device at fan system design condition
Sound Attenuation Section	0.15 in. w.e.
Deductions	
Fume Hood Exhaust Exception (required if 6.5.3.1.1 Exception [c] is taken)	-1.0 in. w.e.

oper	
MERV	13 filter
 A_{filter} 	= 0.9 in. H ₂ O × 30,000 cfm / 4131 = 6.5 bhp
Total-	energy wheel
 A_{supp} 	_{y-side} = 0.8 in. H ₂ O × 10,000 cfm / 4131 = 1.9 bhp
 A_{exha} 	$_{ust-side}$ = 0.7 in. H ₂ O × 8,000 cfm / 4131 = 1.4 bhp
A = 6.	5 + 1.9 + 1.4 = 9.8 bhp
allowa	ble fan system bhp \leq 48.8 (30,000 \times 0.0013 + 9.8
allowa	ble fan system bhp \leq 48.8 (30,000 \times 0.0013 + 9.

Ways to Reduce Fan Power

- 1. Reduce airflow
 - Reduce cooling loads (better envelope, fewer and better windows, more efficient lighting)
 - Colder supply-air temperature
- 2. Reduce airside pressure loss
 - Efficient duct fittings
 - Larger ductwork
 - Larger air-handling unit
 - · Low pressure drop filters and coils
- 3. Select a higher-efficiency fan (if you have the choice)

Baseline fan selection	15.2 bhp
Reduce airflow (colder air)	7.3 bhp
Reduce airside pressure loss	13.0 bhp
Selecting a higher-efficiency fan	13.9 bhp
Implement all three	5.7 bhp

summary Fans in Air-Handling Systems

- The right fan depends on the application, and is often based on balancing efficiency, acoustics, and cost.
- It is important to understand how the fan will interact within the system.
 - · Dirty filters and wet cooling coils
 - · Fan modulation in a VAV system
 - System effect
- Sound data taken in accordance with AHRI 260 provides the best indication of sound produced by the entire air-handling unit.

