

Trane Engineers Newsletter Live

Trane Engineers Newsletter Live Series All-Variable-Speed Chilled-Water Plants

Abstract

Variable frequency drives (VFDs) are being used on all chilled-water system components (fans, pumps, and chillers), and for good reason. When systems are properly designed and controlled, they offer the opportunity for significant energy savings as well as improved operation. With these new opportunities come new complexities. This ENL discusses all variable-speed chilled-water system design and control. Discussion will include individual component and system performance as well as system design options and control.

Presenters: Trane applications engineers Lee Cline, Susanna Hanson and Mick Schwedler.

After attending you will be able to:

- Build the case for variable speed to be used in the context of broader chiller plant design objectives understanding that it's not a one size fits all.
- · Identify energy saving opportunities in various chilled water plants
- Summarize control options and their energy and complexity impact, regardless of the planned chiller plant design
- Summarize the impact of operating on the edges of the safe operating envelope.
- Summarize limit protection mode considerations and the importance of incorporating into the control system.

Agenda

History of VSD use in chiller plant operation

- a) Potential efficiency of chiller plants (various configurations)
- b) VSDs impact on HVAC components
- c) Existing system review

System configuration examples - what's the payoff?

All variable-speed chiller plant operation

- a) Understanding of control options and their energy and complexity impact, regardless of the planned chiller plant design
 - Importance of incorporating limit mode into the control system

User interaction

b)

Application to existing systems

Resources

Presenter biographies

Susanna Hanson | applications engineer | Trane

Susanna is an applications engineer at Trane with over 15 years of experience with chilled-water systems and HVAC building load and energy analysis. Her primary responsibility is to aid system design engineers and Trane personnel in the proper design and application of HVAC systems. Her main areas of expertise include chilled-water systems and ASHRAE Standard 90.1. She is also a Certified Energy Manager.

She has authored several articles on chilled-water plant design, and is a member of ASHRAE SSPC 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings. Susanna earned a bachelor's degree in industrial and systems engineering from the University of Florida, where she focused on building energy management and simulation.

Mick Schwedler | manager, applications engineering | Trane

Mick has been involved in the development, training, and support of mechanical systems for Trane since 1982. With expertise in system optimization and control (in which he holds patents), and in chilled-water system design, Mick's primary responsibility is to help designers properly apply Trane products and systems. To do so, he provides one-on-one support, writes technical publications, and presents seminars.

A recipient of ASHRAE's Distinguished Service and Standards Achievement Awards, Mick is past Chair of SSPC 90.1. He also contributed to the ASHRAE GreenGuide and is a member of the USGBC Education Events Committee. Mick earned his mechanical engineering degree from Northwestern University and holds a master's degree from the University of Wisconsin Solar Energy Laboratory.

Lee Cline | applications engineer | Trane

Lee is a staff engineer in the Systems Engineering Department with over 30 years of experience at Trane. His career at Trane started as a factory service engineer for heavy refrigeration, helping to introduce the CVHE centrifugal chiller with electronic controls to the industry. Following that Lee was a member of the team that kicked off the microelectronic building automation and Integrated Comfort Systems controls – ICS – offering at Trane. He continues to push new unit and system control and optimization concepts into the industry, many of which are integrated in Trane EarthWise™ Systems. As a Systems Engineer Lee also has the opportunity to discuss HVAC system application and control with owners, engineers and contractors on a daily basis.

Lee earned his Bachelors degree in Mechanical Engineering from Michigan Technological University. He is a member of ASHRAE and a Registered Professional Engineer in the State of Wisconsin.

Ingersoll Rand

is a USGBC Education Provider committed to enhancing the professional development of the building industry and LEED Professionals through high-quality continuing education programs.

As a USGBC Education Provider, we have agreed to abide by USGBC-established operational and educational criteria, and are subject to course reviews and audits for quality assurance.

GBCI CMP

All-Variable-Speed Chilled-Water Plants (Course ID: 0090010398) Approved for 1.5 GBCI hours for LEED professionals

learning objectives After today's program you will be able to:

- Build the case for variable speed to be used in the context of broader chiller plant design objectives –understanding that it's not a "one size fits all"
- Identify energy saving opportunities in various chilled water plants
- Summarize control options and their energy and complexity impact, regardless of the planned chiller plant design
- Summarize the impact of operating on the edges of the safe operating envelope
- Summarize limit protection mode considerations and the importance of incorporating into the control system

Chilled-Water Pumping: 90.1-1989 (sort of)

9.5.5.3 Variable Flow. Pumping systems that serve control valves designed to modulate or step open and closed as a function of load shall be designed for variable fluid flow. The system shall be capable of reducing system flow to 50% of design flow or less. Flow may be varied by one of several methods, including but not limited to variable-speed-driven pumps, staged multiple pumps, or pumps riding their characteristic performance curves

Evolution of Chilled-Water (ChW) Pump Requirements
≤30% of design wattage at 50% design flow;

- controls (such as variable speed control) to achieve...(performance)
 - 90.1-1999, -2001, -2004, 2007:
 - Pump head exceeds 100 feet and power exceeds 50 hp
 - 90.1-2010

14 © 2013 Trane, a business of Ingersoll-Rand

13 © 2013 Trane, a business of Ingersoll-Rand

Motors exceed 5 hp

 6.5.3.2 (Heat rejection) Fan Speed Control. Each fan powered by a motor of 7.5 hp or larger shall have the capability to operate that fan at two-thirds of speed or less and shall have controls that automatically change the fan speed to contain the leaving fluid temperature or condensing temperature/pressure of the heat rejection device...

Table 6.8.1C - Excerpt	90.1-	2007 Addendum M
	Path A	Path B
Air cooled < 150 tons	9.562 EER 12.5 IPLV	
Air cooled 150+ tons	9.562 EER 12.75 IPLV	
Water cool. pos. displ. >75 tons	0.780 kW/ton 0.630 IPLV	0.800 kW/ton 0.600 IPLV
75 - less than 150 tons	0.775 kW/ton 0.615 IPLV	0.790 kW/ton 0.586 IPLV
150 - less than 300 tons	0.680 kW/ton 0.580 IPLV	0.639 kW/ton 0.490IPLV
300+ tons	0.620 kW/ton 0.540 IPLV	0.718 kW/ton 0.540 IPLV
Centrifugals < 300 tons	0.634 kW/ton 0.596 IPLV	0.639 kW/ton 0.450 IPLV
300 – less than 600 tons	0.576 kW/ton 0.549 IPLV	0.600 kW/ton 0.400 IPLV
600+ tons	0.570 kW/ton	0.590 kW/ton

Addendum CH Mandatory: Chiller Efficiency as of 2015

Chiller type/size	Path A	Path B
Air cooled < 150 tons	10.1 EER and 13.7 IPLV	9.7 EER and 15.9 IPLV
Air cooled >= 150 tons	10.1 EER and 14.0 IPLV	9.7 EER and 16.1 IPLV
WC pos. disp. < 75 tons	0.750 kW/ton & 0.600 IPLV	0.780 kW/ton & 0.500 IPLV
WC pos. disp. 75 < 150 tons	0.720 kW/ton & 0.560 IPLV	0.750 kW/ton & 0.490 IPLV
WC pos. disp. 150 < 300 tons	0.660 kW/ton & 0.540 IPLV	0.680 kW/ton & 0.440 IPLV
WC pos. disp. 300 < 600 tons	0.610 kW/ton & 0.520 IPLV	0.625 kW/ton & 0.410 IPLV
WC pos. disp. >= 600 tons	0.560 kW/ton & 0.500 IPLV	0.585 kW/ton & 0.380 IPLV

- Mandatory requirements
 - Chiller efficiency
 - Tower efficiency)
 - · Load and pump head calculations
 - Piping insulation (unless chilled fluid is between 60-105°F)
- Prescriptive hydronic requirements
 - · Pump speed or chilled water reset
 - · Variable flow
 - Hot gas bypass limitation

Tower type/size	Rated condition	Requirement
Propeller or axial fan, open-circuit	95°F entering water 85°F leaving water 75°F entering wetbulb	(40.2 gpm/hp)
Centrifugal fan, open-circuit	95°F entering water 85°F leaving water 75°F entering wetbulb	20.0 gpm/hp
Propeller or axial fan, closed-circuit	102°F entering water 90°F leaving water 75°F entering wetbulb	14.0 gpm/hp
Centrifugal, closed-circuit	102°F entering water 90°F leaving water 75°F entering wetbulb	7.0 gpm/hp

Substitution</t

Optimized Tower Control Annualized System Performance

Chiller Type	Cooling Tower Fan	Cond Water Flow Rate	Cond Tower Water Control		Cond Cond Tower System Performance Water Water Control (Annualized kW/ton)						
	. an	(gpm/ton)		mounou	0.4 0.	5 0.6	0.7	0.8	0.9	1.0	1.1
CS	1 Spd	3	CF	85°F				▶▶	I		•
CS	1 Spd	3	CF	Opt							
										1 chill 2 chill	ler lers
										3 chill	lers

Variable-Speed Tower Fan Annualized System Performance

Chiller Type	Cooling Tower Fan	Cond Water Flow Rate	Cond Water Flow Type	Tower Control Method	System Performance (Annualized kW/ton)
		(gpm/ton)			0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
CS	1 Spd	3	CF	85°F	
CS	1 Spd	3	CF	Opt	
CS	VS	3	CF	85°F	······
					● 1 chiller ■ 2 chillers ▶ 3 chillers

Variable-Speed Chiller-Optimized Tower Control Annualized System Performance

Chiller Type	Cooling Tower Fan	Cond Water Flow Rate	Cond Water Flow Type	Tower Control Method	System Performance (Annualized kW/ton)
		(gpm/ton)			
CS	1 Spd	3	CF	85°F	
CS	1 Spd	3	CF	Opt	
CS	VS	3	CF	85°F	· · · · · · · · · · · · · · · · · · ·
CS	VS	3	CF	Opt	
VS	VS	3	CF	85°F	
VS	VS	3	CF	Opt	
					•1 chiller
					2 chillers
					(S chiners)

2 gpm/ton Condenser Flow Annualized System Performance

Chiller Type	Cooling Tower Fan	Cond Water Flow Rate	Cond Water Flow Type	Tower Control Method	System Performance (Annualized kW/ton)
	T GIT	(gpm/ton)	riow type	method	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
CS	1 Spd	3	CF	85°F	
CS	1 Spd	3	CF	Opt	
CS	VS	3	CF	85°F	· · · · · · · · · · · · · · · · · · ·
CS	VS	3	CF	Opt	
VS	VS	3	CF	85°F	
VS	VS	3	CF	Opt	
VS	VS	2	CF	Opt	■ ■ 1 chiller
					■ 2 chillers ■ 3 chillers
					► 3 chillers

3 gpm/ton Variable Condenser Flow Annualized System Performance

Chiller Type	Cooling Tower Fan	Cond Water Flow Rate	Cond Water Flow Type	Tower Control Method	System Performance (Annualized kW/ton)
	T GIT	(gpm/ton)	riow type	method	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
CS	1 Spd	3	CF	85°F	
CS	1 Spd	3	CF	Opt	
CS	VS	3	CF	85°F	
CS	VS	3	CF	Opt	
VS	VS	3	CF	85°F	
VS	VS	3	CF	Opt	
VS	VS	2	CF	Opt	P
VS	VS	3	VF	Opt	■ 2 chillers > 3 chillers

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Albuquerque – (4B) Office Economizer

Chiller Type	Cooling Tower Fan	Cond Water Flow Rate (gpm/ton)	Cond Water Flow Type	Tower Control Method	System Performance (Annualized kW/ton) 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
CS	1 Spd	3	CF	85°F	
CS	1 Spd	3	CF	Opt	
CS	VS	3	CF	85°F	· · · · · · · · · · · · · · · · · · ·
CS	VS	3	CF	Opt	
VS	VS	3	CF	85°F	
VS	VS	3	CF	Opt	
VS	VS	2	CF	Opt	•••••
VS	VS	3	VF	Opt	
VS	VS	2	VF	Opt	· · · · · · · · · · · · · · · · · · ·

Summary of Summary

- Multiple chillers improves system efficiency
- Optimal variable speed tower fan control saves significant energy
 - and critical for systems with variable speed drive chillers
- Proper (less than 3.0 gpm/ton) condenser water flow rate is very important
- Variable condenser water flow can save energy
 - Perhaps not in a hot, humid climate

Proper component capacity c Classic Condenser S	ontrol ystem Control Methods	
 Fixed Temperature Familiar Easily understood 	 Ignores load vs lift and wet bulb opportunities Prone to control instability 	
 Fixed approach to wet bulb Recognizes importance of WB 	Ignores tower approach variationOnly minimizes chiller lift	
 Chiller condenser pressure Keeps the chiller happy (maybe) 	 Ignores component unloading curves and wet bulb opportunity 	
99 © 2013 Trane, a business of Ingersoll-Rand		

Proper component capacity control Load based control

Pros

Cons

- Effectively allocates components power
- Naturally scales lift to load
- Eliminates temperature based control instability
- Provides predictive operation which enhances control stability
- Must be constrained based on component limitations
- Must be effectively understood and explainable by operators

Cooling Tower Limits Approach Tower water flow rate Decreases with load Minimum for normal At a constant load, increases with operation reduced wet-bulb

- Freeze prevention
- Minimum fan speed

temperature

Mode	e Char	t						
Descr	ibes beha	ivior of s	system	in differ	ent opei	rating m	lodes	
Plant Mode	Diant Submodo		1	11	Component Mode		· · · · ·	
Plant Woue	Plant Submode	Chillers	Chiller Add	CT Fans	Pumps	CHW Pumps	CHW Setpoint	Bypass Valve
Off		Off	N/A	Off	Off	Off	Design	Open
Startup		Soft Start	Return water cooling rate	Temperature control mode (default)	Design Flow	Delta P	Design	Modulate to maintain minimum flo
Normal	Optimizing	Optimized Loading	Opt	Power Allocation/Max Cells	Power Allocation	Standard Critical Valve Reset (2 zones)	Load Based reset - delta T compensation	Modulate to maintain minimum flo
Normai	Operator Override Enhanced Cooling	Optimized Loading	Meets chw setpoint	Power Allocation/Max Cells	Power Allocation	Min Critical Valve Reset (1 zone)	Design	Modulate to maintain minimum flo
Adative Control	Chiller Low Limit	Optimized Loading	Opt	Temp Limit/fan cycling	Refrigerant Delta P limit	Standard Critical Valve Reset (2 zones)	Load Based reset - refrigerant DP compensation	Modulate to maintain minimum flo
Auauve control	Tower Freeze Protection	Optimized Loading	Opt	Power Allocation/Temp Limit/Match HX	Design Flow	Standard Critical Valve Reset (2 zones)	Load Based reset - delta T compensation	Modulate to maintain minimum flo

Agenda engineers newsletter	 History of variable-speed drive (VSD) use in chiller plants Potential efficiency of chiller plants? VSDs impact on HVAC components Existing system review System configuration examples – what's the payoff? All variable-speed chiller plant operation User interaction Application to existing systems
114 © 2013 Trane, a business of Ingersoll-Rand	

Annualized System Performance						1369115 ton-hours 534 peak tons	
Chiller Type	Cooling Tower Fan	Cond Water Flow Rate (gpm/ton)	Cond Water Flow Type	Tower Control Method	Estimated Cost	System Performance (Annualized kW/ton)	
						0.6 0.7 0.8	0.9 1.0 1.1
CS	1 Spd	3	CF	85°F	Base		
CS	1 Spd	3	CF	Opt	\$15,000	-	_ 136,911 ∆kWr
	VS	3	CF	85°F	\$3,000		47 919 AkWh
CS	VS	3	CF	Opt	\$18,000	—	
VS	VS	3	CF	85°F	\$38,000		95,153 ∆kWh
VS	VS	3	CF	Opt	\$53,000		
	VS	2	CF	Opt	New chiller		52.848 ∧kWh
VS	VS	3	VF	Opt	\$65,000		
	VS	2	VF	Opt	New chiller		

