

Installation Operation Maintenance

Adaptive Frequency Drive for RTAC / RTAD / RTWD / RTUD / RTWB / RTUB Chillers

SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment

Table of Contents

Introduction	4
Foreword	4
Warranty	4
Reception	4
General Information	4
General Features	4
Documentation	4
Parts list	5
Parts to be ordered	5
Kits components details	7
Oil	7
Electrical kit	7
Additional material	10
Recommended parts list	10
Mechanical installation	11
Lifting and moving instructions	11
Lifting weight and dimensions	11
Oil change	13
Temperature sensors	13
Pressure transducer	13
Electrical installation	14
Wiring diagram	14
On site connection	14
Power wiring	15
Control wiring	15
Bus wiring	16
Wiring installation instructions	
Control card connection (RTAC and RTWD chiller only)	18
Commissioning	20
AFD configuration	20
Binding	20
Configuration	
Acoustic and vibration	20
Chiller operation with Adaptive Frequency Drive	24
Chiller operating map	24
Specific installation	24

Foreword

These instructions are given as a guide to good practice in the installation and maintenance of the Trane Adaptive Frequency Drive retrofit kit. They do not contain the full service procedures necessary for the continued successful operation of this equipment. The services of a qualified service technician should be employed, through the medium of a maintenance contract with a reputable service company.

Warranty

Warranty is based on the general terms and conditions of the constructor. The warranty is void if the equipment is modified or repaired without the written approval of the constructor, if the operating limits are exceeded, or if the control system or the electrical wiring is modified. Damage due to misuse, lack of maintenance, or failure to comply with the manufacturer's instructions, is not covered by the warranty obligation. If the user does not conform to the instructions given in this document, it may entail cancellation of warranty and liabilities by the constructor.

Reception

On arrival, inspect the parts before signing the delivery note. Specify any damage on the delivery note, and send a registered letter of protest to the last carrier of the goods within 72 hours of delivery. Notify the local Trane sales office at the same time. The parts should be totally inspected within 7 days of delivery. If any concealed damage is discovered, send a registered letter of protest to the carrier within 7 days of delivery and notify the local Trane sales office.

Important notice: No shipping claims will be accepted by Trane if the above mentioned procedure is not respected. Note: More stringent national rules may apply in some countries. For more information, refer to the general sales conditions of your local Trane sales office.

General Information

Cautions appear at appropriate places in this instruction manual. Your personal safety and the proper operation of this machine require that you follow them carefully. The constructor assumes no liability for installations or servicing performed by unqualified personnel

General Features

This document describes the material required and the procedure to install on site Adaptive Frequency Drive on RTAC, RTAD and RTWD units. Support of a qualified Trane technician is required to install and commission the Adaptive Frequency Drive.

Documentation

This document is intended to guide Trane technicians to retrofit a RTAC, RTAD or RTWD chiller with Adaptive Frequency Drive.

Refer to official Trane documentation concerning operation and maintenance of the chillers.

WARNING!

Hazardous Voltage!

Disconnect all electric power before servicing.

Failure to disconnect power before servicing can result in severe personal injury or death caused by electrocution.

WARNING!

Capacitors inside. Wait for 30 minutes after switching off power before servicing the chiller or the Adaptive Frequency Drive.

The parts list below does not mention all parts. Only the kit main components are listed in the document.

Parts to be ordered

Table 1 - Parts list

Unit	OIL	OIL		Electrical kit for Lo Vi compressor		r High Vi sor
RTWD	Part number	Qty	Part number	Qty	Part number	Qty
60	OIL00317	2	KIT1750E	1	KIT1751E	1
70	OIL00317	2	KIT1750E	1	KIT1752E	1
80	OIL00317	2	KIT1753E	1	KIT1754E	1
90	OIL00317	2	KIT1751E	1	KIT1755E	1
100	OIL00317	2	KIT1756E	1	KIT1757E	1
110	OIL00317	2	KIT1758E	1	KIT1759E	1
120	OIL00317	2	KIT1760E	1	KIT1761E++ / KIT1762E+	1
130	OIL00317	2	KIT1763E	1	KIT1764E	1
140	OIL00317	2	KIT1765E	1	KIT1766E	1
160 SE	OIL00317	2	KIT1767E	1	KIT1803E+ / KIT1768E++	1
160 HE & Pr	OIL00317	2	KIT1769E	1	KIT1770E	1
170	OIL00317	2	KIT1771E	1	KIT1772E	1
180	OIL00317	2	KIT1767E	1	KIT1803E+ / KIT1768E++	1
190	OIL00317	2	KIT1773E	1	KIT1774E	1
200	OIL00317	2	KIT1775E* / KIT1771E**	1	KIT1776E* / KIT1772E**	1
220	OIL00317	2	KIT1773E	1	KIT1774E	1
250	OIL00317	2	KIT1775E	1	KIT1776E	1

* Standard efficiency units

** High and premium efficiency units

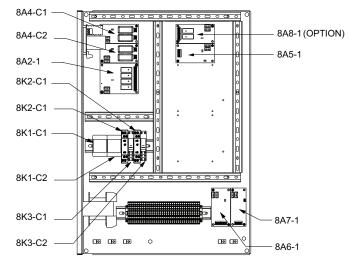
+ Standard evap temperature (>5°C) - High condenser (>35°C) ++ Low evap temperature (<5°C) - Standard condenser (<35°C) Note: Kit for RTUD are the same as for RTWD with HiVi compressor

Unit	OIL		Electrical kit for 45°C ambient operation		Electrical kit f ambient ope	
RTAC	Part number	Qty	Part number	Qty	Part number	Qty
120	OIL00317	2	KIT1777E	1	KIT1778E	1
130	OIL00317	2	KIT1779E	1	KIT1780E	1
140	OIL00317	2	KIT1778E	1	KIT1781E	1
155	OIL00317	2	KIT1782E	1	KIT1783E	1
170	OIL00317	2	KIT1784E	1	KIT1785E	1
175	OIL00317	2	KIT1786E	1	KIT1787E	1
185	OIL00317	2	KIT1788E	1	KIT1789E	1
200	OIL00317	2	KIT1785E	1	KIT1790E	1

Unit	OIL	OIL		Electrical kit for 45°C ambient operation		or 52°C ration
RTAD	Part number	Qty	Part number	Qty	Part number	Qty
85	OIL00317	2	KIT1791E	1	KIT1792E	1
100	OIL00317	2	KIT1792E	1	KIT1793E	1
115	OIL00317	2	KIT1794E	1	KIT1795E	1
125	OIL00317	2	KIT1795E	1	KIT1796E	1
145	OIL00317	2	KIT1797E	1	KIT1798E	1
150	OIL00317	2	KIT1799E	1	KIT1800E	1
165	OIL00317	2	KIT1801E	1	not availa	ble
180	OIL00317	2	KIT1802E	1	not availa	ble

Unit	OIL		Electrical kit		
RTWB/RTUB	Part number	Qty	Part number	Qty	
207	OIL00317	2	KIT1823E	1	
208	OIL00317	2	KIT1824E	1	
210	OIL00317	2	KIT1791E	1	
211	OIL00317	2	KIT1825E	1	
212	OIL00317	2	KIT1792E	1	
214	OIL00317	2	KIT1826E	1	
216	OIL00317	2	KIT1827E	1	
217	OIL00317	2	KIT1795E	1	
218	OIL00317	2	KIT1797E	1	
220	OIL00317	2	KIT1799E	1	
222	OIL00317	2	KIT1801E	1	
224	OIL00317	2	KIT1802E	1	

Kits components details


Oil

Here is a description of oil currently used (existing oil) and oil to be replaced when using Adaptive Frequency Drive (New oil).

Table 2 - Oil changeover

		Existing oil	New oil
Part number		OILO23E	OIL00317
Туре		Ester	Ester
Viscosity at 40°C	Centistoke	69	124.9
Density at 20°C	Kg/dm ³	0.98	0.94
Appearance		Clear to yellow	Gray to yellow
Flash point		268 °C	262 °C
Weight for 1pail	kg	20	20
Oil volume / pail	L	18.9	18.9

Panel design Figure 1 - RTAD/RTWB panel

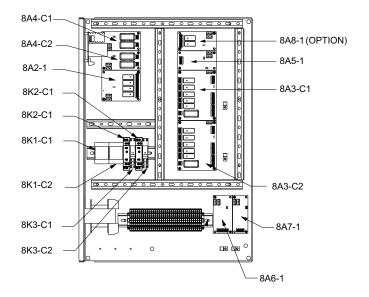


Figure 2 - RTAC/RTWD panel

Electrical kit

Table 3 - Electrical kit description

Material	Quantity	Unit	
AFD	2	#	
Control panel	1	#	
Fuses (when required)	6	#	
Standard Power wiring	2 X 10	m	
Shielded Power wiring	2 X 10	m	
Control wiring	included		
Bus cable	includ	ed	
Temperature sensors	2	#	
Pressure transducers (when required)	2	#	
Terminal lug	20	#	
EMC cable gland	8	#	

<u>Fuses</u>

The large sizes of Adaptive Frequency Drive (110 kW to 132 kW) are mounted with high speed fuses (gG type). Other AFD (30 kW to 90 kW) do not have fuses.

Therefore existing fuses must be changed on units using smaller AFD (sizes 30 kW to 90 kW).

Adaptive Frequency Drive

Caution! Different data for RTWD using HiVi or LoVi compressors

- HiVi compressors used when digit 15 = B / C or digit 21 = 2/3

- LoVi compressors used when digit 15 = A or digit 21 = 1

Table 4 - RTWD AFD selection

Unit	Hi Vi Cor	npressor	A	FD
RTWD	Circuit 1	Circuit 2	Circuit 1	Circuit 2
60	K1	K1	37 KW	37 KW
70	K2	K2	45 kW	45 kW
80	K2	L1	45 kW	55 kW
90	L1	L1	55 kW	55 kW
100	L1	L2	55 kW	75 kW
110	L2	L2	75 kW	75 kW
120	L2	M1	75 kW	75 kW
130	M1	M1	75 kW	75 kW
140	M1	M2	75 kW	90 kW
160 SE	M2	N1	90 kW	110 kW
160 HE & Pr	M2	M2	90 kW	90 kW
170	N1	N1	110 kW	110 kW
180	M2	N1	90 kW	110 kW
190	N1	N2	110 kW	132 kW
200 SE	N2	N2	132 kW	132 kW
200 HE & Pr	N1	N1	110 kW	110 kW
220	N1	N2	110 kW	132 kW
250	N2	N2	132 kW	132 kW

Unit	LoVi Compressor		A	=D
RTWD	Circuit 1	Circuit 2	Circuit 1	Circuit 2
60	K1	K1	30 kW	30 kW
70	K2	K2	30 kW	30 kW
80	K2	L1	30 kW	37 kW
90	L1	L1	37 kW	37 kW
100	L1	L2	37 kW	45 kW
110	L2	L2	45 kW	45 kW
120	L2	M1	45 kW	55 kW
130	M1	M1	55 kW	55 kW
140	M1	M2	55 kW	75 kW
160 SE	M2	N1	75 kW	90 kW
160 HE & Pr	M2	M2	75 kW	75 kW
170	N1	N1	90 kW	90 kW
180	M2	N1	75 kW	90 kW
190	N1	N2	90 kW	110 kW
200 SE	N2	N2	110 kW	110 kW
200 HE & Pr	N1	N1	90 kW	90 kW
220	N1	N2	90 kW	110 kW
250	N2	N2	110 kW	110 kW

Table 5 - RTAD / RTAC / RTWB AFD selection

	Unit		Compressor type		AI	FD
RTWB	RTAD	RTAC	Circuit 1	Circuit 2	Circuit 1	Circuit 2
207			K1	K1	37 kW	37 kW
208			K2	K2	45 kW	45 kW
210	85		L1	L1	55 kW	55 kW
211			L2	L1	75 kW	55 kW
212	100		L2	L2	75 kW	75 kW
214	115	120	M1	M1	75 kW	75 kW
		130	M2	M1	90 kW	75 kW
216			M1	M2	75 kW	90 kW
217	125	140	M2	M2	90 kW	90 kW
218	145	155	N1	M2	110 kW	90 kW
220	150	170	N1	N1	110 kW	110 kW
		175	N2	M2	132 kW	90 kW
222	165	185	N2	N1	132 kW	110 kW
224	180	200	N2	N2	132 kW	132 kW

<u>Wiring</u>

Each electrical kit is provided with appropriate power wiring to connect electrical kit to the unit. 10 m of standard power wiring and 10m of shielded power wiring are provided for each circuit.

Figure 3 - Standard and shielded power wiring

Figure 4 - Control wiring

Figure 5 - Bus Wiring

Additional material

The following material is not provided within Trane kit and has to be locally supplied:

- Cable tray
- Fitting accessories for AFD panel

Tools

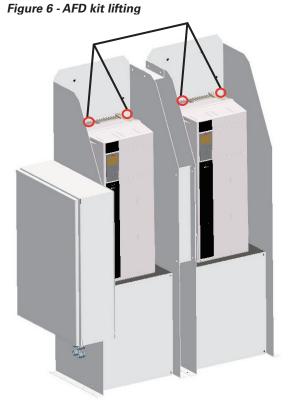
- Cable cutter for large section wiring
- Crimping tool to connect terminal lug to power wiring
- Drill or knock out tool to adapt cable glands holes into compressor terminal box
- 2 pipe wrench to lock cable glands
- Female lugs (faston) to connect control card
- Grinder to remove paint from terminal box
- Rover converter (RS485). Switch position = half duplex (2 wire) without echo
 - S1: ON
 - S2: OFF
 - S3: OFF
 - S4: OFF

Connection from AFD control card (8A5-1) to Rover converter: J2-3 to terminal 2 / J2-4 to terminal 1

Recommended parts list

Table 6 - Recommended parts list

Part number	Description	item	RTAC/RTWD	RTAD/RTWB
BRD02102	Power supply module	8A1-1	Х	Х
BRD04879	Quad relay output module	8A2-1	Х	Х
BRD04876	Dual triac output module	8A4-C*	Х	Х
MOD0209E	Communication card module	8A5-1	Х	Х
BRD04875	Dual analog input/output	8A6-1	Х	Х
BRD04873	Dual low input voltage	8A7-1	Х	Х
SEN02133	Temperature sensor	8B1-C*	Х	Х
TRD0025E	Pressure transducer	8B3-C*		Х
BRD04877	Starter card	8A3-C*	Х	



Mechanical installation

Lifting and moving instructions

Trane recommends the following lifting method for the Adaptive Frequency Drive retrofit kit:

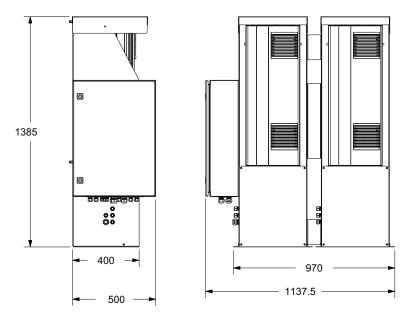
- The kit is delivered on a skid
- The minimum lifting capacity of material used must be higher than the tabulated kit shipping weight
- CAUTION! Lift and handle with care. Avoid shocks while handling.
- Lifting rings are available on each drive. Use these rings to lift the AFD kit as per drawing below.

Lifting weight and dimensions

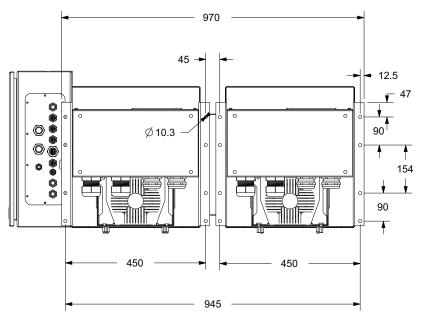
Unit model			Kit weight (kg)		Total weight	
RTAD	RTAC	RTWD	RTWB	AFD + panel	wiring + accessories	(kg)
		60	207	216	200	416
		70	208	216	210	426
		80		216	210	426
85		90	210	216	215	431
		100	211	236	220	456
100		110	212	256	225	481
		120	214	256	230	486
115	120	130		256	235	491
	130	140	216	256	240	496
125	140	160	217	256	245	501
145	155	180	218	253	250	503
150	170	200	220	250	255	505
	175			253	260	513
165	185	220	222	250	265	515
180	200	250	224	250	270	520

External dimensions of the kit are:

Height = 1385 mm


Width = 1137.5 mm

Depth = 500 mm



Mechanical installation

Figure 7 - AFD kit external dimensions

Mechanical installation

Oil change

Change oil prior to electrical change.

Compressor oil can be changed without removing the refrigerant. It is required to drain the maximum oil and replace by the new oil supplied with the kit. Respect the following steps when changing oil:

Step 1: Run the unit for 30 min

Step 2: Drain the oil

Step 3: Measure the volume of the old oil recovered

Step 4: Fill the tank with the same volume of new oil as measured in step 3.

It is authorized to have a mix of old and new oil. Tolerance limit of old oil is set at 20%.

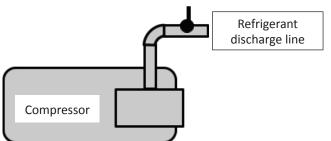
When doing an AFD retrofit, two oil changes (drain/ refill) are required to ensure proper oil viscosity. We recommend doing an oil analysis to check oil viscosity after each oil change and after running the unit during 30 minutes.

CAUTION !: Compressor longevity

In each chiller circuit, oil viscosity must be above 100 cSt at 40°C for AFD application.

Temperature sensors

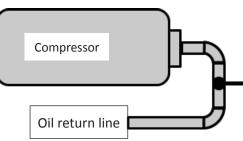
Two temperature sensors are supplied within the kit. They must be mounted on the chiller and connected to the retrofit kit control panel.


Mounting instructions:

- Use thermal paste
- Mount sensor on thermal paste
- Maintain sensor with cable tie
- Cover sensor with thermal insulation

RTAC, RTAD and RTWB

One temperature sensor must be mounted on each circuit discharge line. The temperature sensor must be mounted as close as possible to the compressor as per picture below.


Figure 8 - Refrigerant temperature sensor mounting on RTAC / RTAD / RTWB units

RTWD

One temperature sensor must be mounted on each oil line. The temperature sensor must be mounted as close as possible to the compressor between oil separator (or oil cooler when available) and compressor.

Figure 9 - Oil temperature sensor mounting on RTWD units

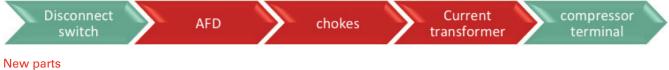
Pressure transducer

RTAD and RTWB units

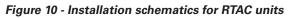
Pressure transducers are provided and required for RTAD units only. They have to be mounted on the Schraeder valve of each oil separator.

Electrical installation

Wiring diagram


The kit wiring diagram (including wire type and location) is available in pdf and AutoCAD formats.

- RTAC: 23113535
- RTAD: 23113536
- RTWB: 23113966
- RTUB: 23113967


Wiring diagrams for the chiller retrofit are available as pdf and AutoCAD formats:

- RTAC: 23113532
- RTAD: 23113534
- RTWB: 23113968

On site connection

Existing parts

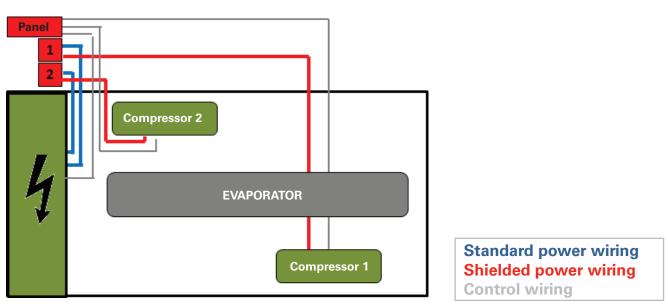
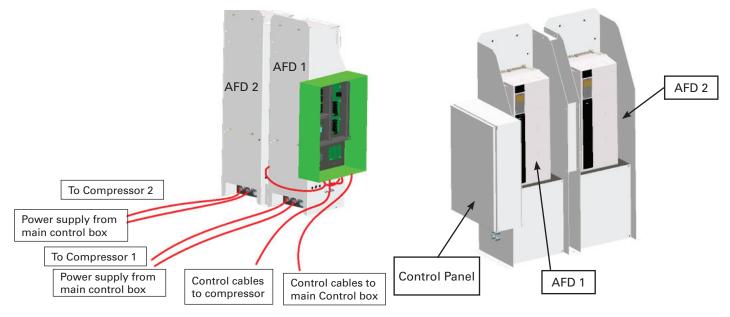



Figure 11 - Wiring connection for AFD kits

Power wiring

10m standard power wiring and 10m shielded power wiring are supplied for each circuit within the kits:

- Standard power wiring to be installed from the main electrical panel to the AFD.
- Shielded power wiring to be installed from the AFD to the compressor.

Caution!: when tightening the screw terminal lug. Respect fastening torque:

- K & L compressor: 11.3 Nm
- M & N compressor: 27.1 Nm

Control wiring

EMC compatibility

Control wiring and power wiring must be separated by **30cm minimum** and positioned in separated cable trays. *Figure 12 - Wiring installation*

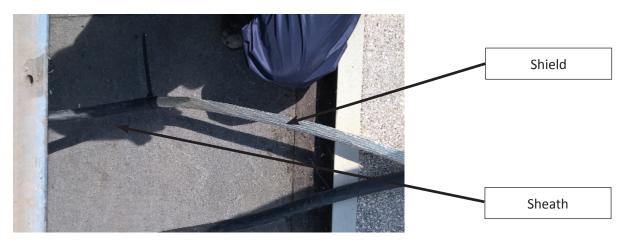
Bus wiring

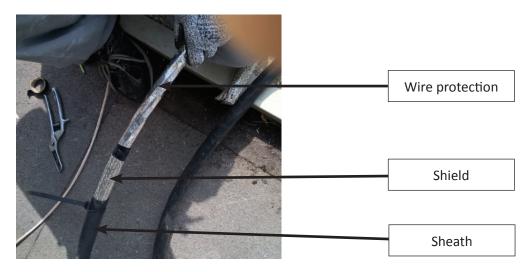
The bus leaving the kit panel must be connected to the existing bus on the chiller. A "Y" connector is provided within the kit to ensure such connection.

Connect temperature and pressure sensors on the auxiliary bus. The bus cable is provided within the kit.

Wiring installation instructions

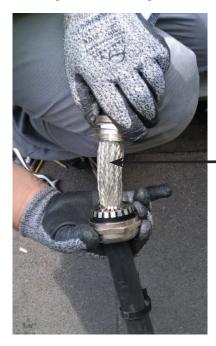
It is required to have wires follow a straight line as much as possible and being as short as possible. The cable must be placed as close to the unit metallic frame as possible.


Installing EMC cable gland


When using the reducer after the EMC cable gland, make sure shielding is connected to the cable gland.

Figures 13 - Shielded power wiring installation into EMC cable gland

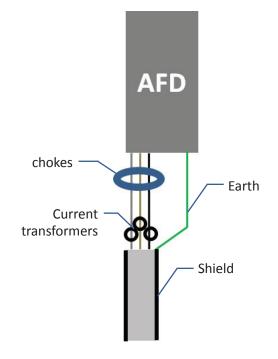
STEP 1: Remove the sheath without damaging the shield and maintain remaining sheath



STEP 2: Leave only 10 cm of shield and maintain it with tape. It will be easier to place cable gland afterwards.

STEP 3: Place the cable gland. Ensure the shield is connected to the cable gland. Warning!: Do not damage the shield.

Shield


Wiring installation to the AFD

Chiller operation

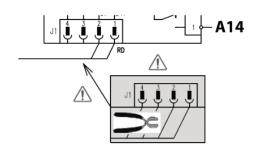
The shield must be removed and connected to cable glands prior going through the current transformer and chokes.

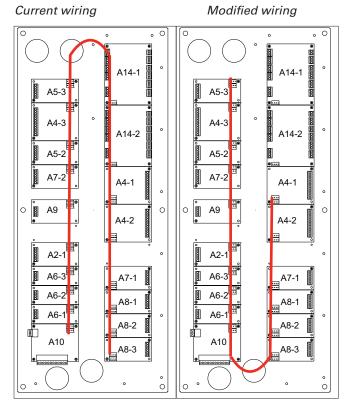
Figure 14 - Wiring connection to AFD

Figures 15 - Installing EMC cable gland to compressor terminal box

Figure 17 - New bus connection into RTAC control panel

STEP 1: Scratch paint around holes into the terminal box


STEP 2: Install adaptive plate provided within the kit and drill at appropriate diameter (according to cable glands dimensions)


Control card connection (RTAC and RTWD chiller only) RTAC

It is required to cut the "COM" part of the control board A14-1 and A14-2 as per drawing below and as shown on wiring diagram 23113532.

Figure 16 - Starter card adaptation

Therefore Control card A14-1 and A14-2 must be at the end of bus daisy chain as per drawing below.

All connections on J3 to card A14-1 and A14-2 must be moved to another card (ie. A10) to ensure power and communication.

A14-1 and A14-2 are starter cards. New cards are available into the AFD kit control panel. The cards available into the original electrical panel are no longer used.

RTWD

It is required to cut the "COM" part of the control board 1A3 and 1A4 as per drawing below and as shown on wiring diagram 23113531.

Therefore caxrd 1A3 and 1A4 must be placed at one end of the bus daisy chain as per drawing below.

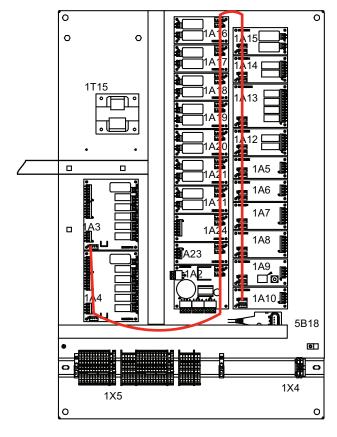


Figure 18 - New bus connection into RTWD control panel

AFD configuration

Configurations are to be made using MCT10 software. Configurations are available on the Technical Service Sharepoint.

Binding

Starter Card

Binding using Techview or Kestrelview.

Additional card binding

Control binding must be made using GP2 VFD software available on <u>Technical Service SharePoint</u>.

Configuration

 Table 8 - Unit configuration change using Techview or

 Kestrelview

RTAC/RTWD	RTAD / RTWB	
 Select Across the line starter type 	 Disable Starter current reduction 	
 Disable starter integrity test 	 Disable phase unbalance 	
• Disable phase unbalance protection	protectionDisable phase	
 Disable phase reversal protection 	reversal protection	

Depending on the system characteristics, machine gain settings (CH530 or UCM-CLD) should be adjusted to avoid chiller system instability.

New control

The latest application is loaded from factory into the controller card (8A5-1). The application software update is available on the <u>Technical Service SharePoint</u> if required.

Use GP2 VFD software

Configuration loading

Use GP2 VFD software

Acoustic and vibration

Once the chiller has been commissioned, a frequency sweep must be performed to detect any excessive vibration liable to damage the chiller. The below guidelines must be followed to avoid any risk.

Methodology

- <u>Detect vibration location</u>: Perform a frequency sweep from 30Hz to 50Hz and examine piping (suction and discharge line) to detect any important vibration or disturbing noise issues. In case of any abnormal operation record the location and frequency where vibrations are prevalent.
- <u>Vibration measurement</u>: Take vibration velocity measurement, compare it to the design criteria and examine the characteristics. Identify the types of piping vibration:
 - Directly excited by the compressor's harmonics are:
 - Harmonic 1 (30Hz 50Hz)
 - Harmonic 2 (60Hz to 100 Hz)
 - Harmonic 5 (150Hz to 250Hz)
 - harmonic 10 (300Hz to 500Hz)
 - Identify by the hammer test (FRF test) as structural resonance of the piping
 - Compare to appropriate screening criteria
- Evaluate potential solutions: Once the frequency is well defined, you can apply an AFD frequency skip.

Once the cause of the resonance frequency is well identified, you can apply a line weight on the piping to shift down the resonance frequency and to reduce the vibration level.

Measurement device requirement for resonance determination

To measure the vibrations velocity and determine if there is some level above the design criteria and examine the characteristics, the below devices should be used.

- Vibration acquisition system with (FFT analyzer)
 - o 4 to 8 channels measurements
 - $\circ~$ Minimum bandwidth from 0 Hz to 1000 Hz with ${\scriptstyle \Delta f=1Hz}$
 - Ramp up or ramp down measurement function (no stationary measurements)
 - Hit test function (FRF)
 - Tachometric channel for speed compressor measurement (optional)
- <u>Sensors</u>
 - Accelerometers 3 axis or mono axis with at least a sensibility of 10 mV/g, 50 mV/ or 100 mV/g,
 - Hammer test with frequency excitation from 10 Hz to 1000 Hz with 0.2 mV/N with a weight of 1 kg. (Example PCB 086D05).
- <u>Unit</u>
 - Vibration velocity measurement must be in mm/s RMS
 - Vibration displacement measurement must in mm peak to peak

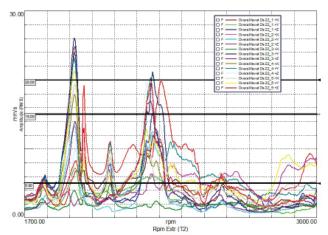
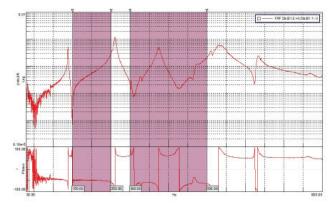



Figure 19 - Operational vibration velocity (mm/s) example

Figure 20 - Frequency response function of the discharge line (hit test) In g/N or m/s²/N example

Measurement points location

Below are point location recommendations for RTAD and RTAC units. If vibration areas are noticed in other locations, measurement levels at these locations should be performed.

Figure 21 - RTAD 085 SE - points locations

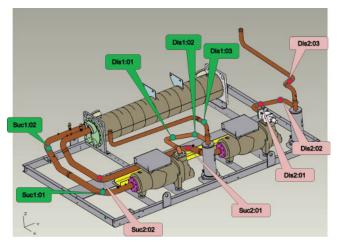
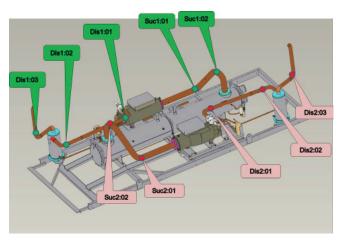
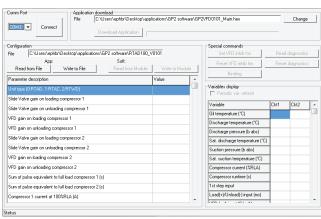



Figure 22 – RTAC 200 - points locations

- Accelerometer location on circuit 1
- Accelerometer location on circuit 2

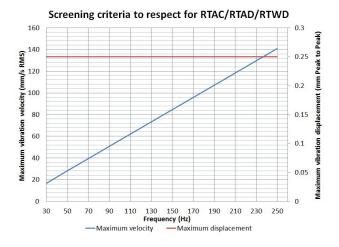

Frequency sweep

Before performing a frequency sweep it is recommended to:

- Check that the load is high (slide valve must be at full load, set point at leaving temperature not reachable)
- · Check that load is constant on the system
- Make a ramp down from 50 Hz to 30 Hz on a 10 min period.

Figure 23 - Select "Set VFD inhibit timer" in the AFD tool

Fom the AFD operator display:


- Select 'Hand On' key on AFD
- Select 'Main Menu'
- Select Parameter '342' (Ramp 1 Ramp-down time) and set at 600 s for example
- Select 'Status'
- Come back to Auto menu once trial is done.

Screening criteria

Trane developed general vibration level criteria to check piping stress level. Stress level is defined as a maximum displacement level measurement in peak to peak.

The general vibration level criteria are defined at 10 Mils Peak-to-Peak which is equivalent to 0.2 mm (peak to peak).

Figure 24 – Screening criteria for RTAC/RTAD/RTWD

- If vibration levels are measured above the criteria:
- Skip the frequency range where there is high vibration level
- And/or place a line weight on the line. This action requires additional measurement:
 - Hit test on the line to make sure there is no resonance frequency a few hertz lower
 - Operation vibration measurement to make sure vibration criterion is respected from 30 Hz to 50 Hz.

<u>Important note</u>: The vibration criteria are related to the risks of failure of the piping due to a resonance. They are not related to the noise. It is possible to respect criteria and have an important noise occurrence related to a piping resonance.

Vibration displacements in general are linked to low frequency mode (<250 Hz) whereas occurrences of acoustic noise resonance are linked to higher frequency mode (>250 Hz).

Skip frequency procedure

There are two methods to skip frequency (maximum 2 hz):

- Using MCT10 software
 - Select menu 'all parameters'
 - Select sub menu '4-** Limits/Warning'
 - Select '4-6 speed bypass'
 - Bypass disturbing frequencies

It is recommended to bypass frequencies instead of speed.

- · Set parameters in the AFD display
 - Select 'Main Menu' button
 - Select menu '4-** Limits/warning'
 - Select '4-6 speed bypass'

It is possible to set up to 4 frequency jumps in specifying the starting and ending frequency (in Hz) - parameters 461-0 to 461-3 (start from ...) and 463-0 to 462-3 (end to ...)

The AFD will bypass the speed or frequency during loading or unloading phases

Adding a line weight

Table 9 - Line weight to be used to solve vibration ornoise issues

Part number	Line diameter
MAS0008E	2"5/8
MAS0020E	3″1/8
MAS0002E	2″1/8

Typically line weight can be located as shown in figures 25 and 26.

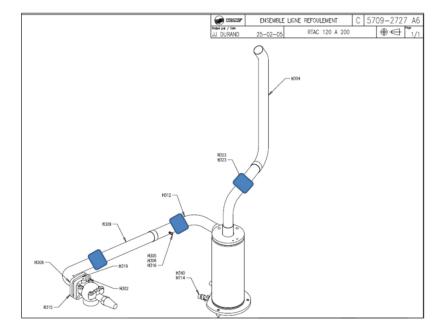
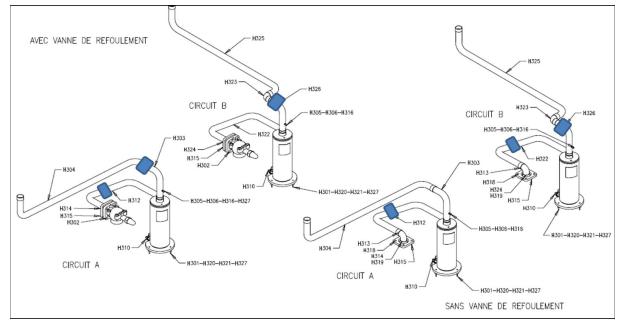



Figure 25 – Recommended line weight location for RTAC

Figure 26 – Recommended line weight location for RTAD

Chiller operation with Adaptive Frequency Drive

Adding an Adaptive Frequency Drive might change the operating parameters of the chiller. Information available in the original Maintenance guide and User guide are still valid. This document should be considered as an addendum to original unit documentation.

Table 10 - Original document references

	User guide	Maintenance guide
RTAC	SVU01B	SVX02G
RTAD	SVU02F	SVX01F
RTWD	SVU05A	SVX14F
RTWB	SVU02A	SVN01B

Chiller operating map

The chiller operating maps do not change when operating with Adaptive Frequency Drive. However it is recommended to select the appropriate kit according to the maximum ambient temperature at your location (Refer to Table 1).

Specific installation

Neutral connection

CAUTION! Units must not be linked to the neutral wiring of the installation. Units are compatible with the following neutral operating conditions.

TNS	IT	TNC	TT
OK	Special	Special	OK

• The first letter indicates the neutral connection type

T: Direct connection to Earth

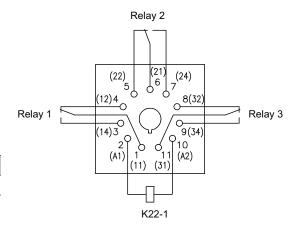
I: Isolated from Earth

• The second letter indicates the mass connection

T: connection to earth

N: connection to neutral

RTAD Total Heat Recovery and hydraulic module Table 11 - Additional material to be supplied by local Trane offices


Reference	Description	Part #	Qty
K22-1 & K22-2	Relay SKR 115-110V AV	RLY0129E	2
	Chassis for relay	BAS0018E	2
1 mm ² cable			

and accessories

Table 12 - Connection to be made on each circuit

Coil	Terminal A1 from K22-1 connected to Terminal X2-20 (terminal block)
	Terminal A2 from K22-1 connected to Terminal X2-2 (terminal block)
Relay 1 (contact NO)	Terminal 11 from K22-1 connected to X2-1 (terminal block)
	Terminal 14 from K22-1 connected to X2-25 (terminal block)
Relay 2 (contact NO)	Terminal 21 from K22-1 connected to X2-30 (terminal block)
	Terminal 24 from K22-1 connected to module A71, J5, Terminal 1D1

Figure 27 - New relay connections

RTWD power meter

The power meter feature is disabled with AFD.

Trane optimizes the performance of homes and buildings around the world. A business of Ingersoll Rand, the leader in creating and sustaining safe, comfortable and energy efficient environments, Trane offers a broad portfolio of advanced controls and HVAC systems, comprehensive building services and parts. For more information visit www.Trane.com

Ingersoll-Rand International Limited - 170/175 Lakeview Drive, Airside Business Park, Swords, Co. Dublin, Ireland

© 2016Trane All rights reserved SRV-SVX007B-GB_0216 Supersedes SRV-SVX007A-GB_0715 We are committed to using environmentally conscious print practices that reduce waste.

